Commit Graph

93 Commits

Author SHA1 Message Date
River Riddle ace01605e0 [mlir] Split out a new ControlFlow dialect from Standard
This dialect is intended to model lower level/branch based control-flow constructs. The initial set
of operations are: AssertOp, BranchOp, CondBranchOp, SwitchOp; all split out from the current
standard dialect.

See https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061

Differential Revision: https://reviews.llvm.org/D118966
2022-02-06 14:51:16 -08:00
gysit b7f2c108eb [mlir][linalg] Replace LinalgOps.h and LinalgTypes.h by a single header.
After removing the range type, Linalg does not define any type. The revision thus consolidates the LinalgOps.h and LinalgTypes.h into a single Linalg.h header. Additionally, LinalgTypes.cpp is renamed to LinalgDialect.cpp to follow the convention adopted by other dialects such as the tensor dialect.

Depends On D115727

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D115728
2021-12-15 12:15:03 +00:00
gysit 9912bed730 [mlir][linalg] Remove RangeOp and RangeType.
Remove the RangeOp and the RangeType that are not actively used anymore. After removing RangeType, the LinalgTypes header only includes the generated dialect header.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D115727
2021-12-15 07:19:10 +00:00
River Riddle ef976337f5 [mlir:OpConversion] Remove the remaing usages of the deprecated matchAndRewrite methods
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.

Differential Revision: https://reviews.llvm.org/D110360
2021-09-24 17:51:41 +00:00
Alex Zinenko a24e020d1a [mlir] add missing build dependency 2021-07-16 15:20:07 +02:00
Alex Zinenko 881dc34f73 [mlir] replace llvm.mlir.cast with unrealized_conversion_cast
The dialect-specific cast between builtin (ex-standard) types and LLVM
dialect types was introduced long time before built-in support for
unrealized_conversion_cast. It has a similar purpose, but is restricted
to compatible builtin and LLVM dialect types, which may hamper
progressive lowering and composition with types from other dialects.
Replace llvm.mlir.cast with unrealized_conversion_cast, and drop the
operation that became unnecessary.

Also make unrealized_conversion_cast legal by default in
LLVMConversionTarget as the majority of convesions using it are partial
conversions that actually want the casts to persist in the IR. The
standard-to-llvm conversion, which is still expected to run last, cleans
up the remaining casts  standard-to-llvm conversion, which is still
expected to run last, cleans up the remaining casts

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D105880
2021-07-16 15:14:09 +02:00
Alexander Belyaev 46ef86b5d8 [mlir] Move linalg::Expand/CollapseShapeOp to memref dialect.
RFC: https://llvm.discourse.group/t/rfc-reshape-ops-restructuring/3310

Differential Revision: https://reviews.llvm.org/D106141
2021-07-16 13:32:17 +02:00
Alex Zinenko 75e5f0aac9 [mlir] factor memref-to-llvm lowering out of std-to-llvm
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.

Reviewed By: herhut, silvas

Differential Revision: https://reviews.llvm.org/D105625
2021-07-09 14:49:52 +02:00
Alexander Belyaev 485c21be8a [mlir] Split linalg reshape ops into expand/collapse.
Differential Revision: https://reviews.llvm.org/D103548
2021-06-03 11:40:22 +02:00
Nicolas Vasilache 8eb18a0f3e [mlir][Standard] NFC - Drop remaining EDSC usage
Drop the remaining EDSC subdirectories and update all uses.

Differential Revision: https://reviews.llvm.org/D102911
2021-05-21 10:40:39 +00:00
Mehdi Amini 973ddb7d6e Define a `NoTerminator` traits that allows operations with a single block region to not provide a terminator
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.

To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.

This patch is likely to break clients, if you're in this case:

- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
  the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
  just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.

Differential Revision: https://reviews.llvm.org/D98468
2021-03-25 03:59:03 +00:00
Chris Lattner dc4e913be9 [PatternMatch] Big mechanical rename OwningRewritePatternList -> RewritePatternSet and insert -> add. NFC
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names.  We'll keep the old names around for a
couple weeks to help transitions.

Differential Revision: https://reviews.llvm.org/D99127
2021-03-22 17:20:50 -07:00
Chris Lattner 3a506b31a3 Change OwningRewritePatternList to carry an MLIRContext with it.
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters.  There are many many more to be removed.

Differential Revision: https://reviews.llvm.org/D99028
2021-03-21 10:06:31 -07:00
Alex Zinenko 1b101038dc [mlir] Turn Linalg to LLVM into a partial conversion
Historically, Linalg To LLVM conversion subsumed numerous other conversions,
including (affine) loop lowerings to CFG and conversions from the Standard and
Vector dialects to the LLVM dialect. This was due to the insufficient support
for partial conversions in the infrastructure that essentially required
conversions that involve type change (in this case, !linalg.range to
!llvm.struct) to be performed in a single conversion sweep. This is no longer
the case so remove the subsumed conversions and run them as separate passes
when necessary.

Depends On D95317

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D96008
2021-02-05 14:31:19 +01:00
Nicolas Vasilache f4ac9f0334 [mlir][Linalg] Drop SliceOp
This op is subsumed by rank-reducing SubViewOp and has become useless.

Differential revision: https://reviews.llvm.org/D95317
2021-02-04 11:22:01 +00:00
Alex Zinenko c69c9e0f0f [mlir] Remove LLVMType, LLVM dialect types now derive Type directly
BEGIN_PUBLIC
[mlir] Remove LLVMType, LLVM dialect types now derive Type directly

This class has become a simple `isa` hook with no proper functionality.
Removing will allow us to eventually make the LLVM dialect type infrastructure
open, i.e., support non-LLVM types inside container types, which itself will
make the type conversion more progressive.

Introduce a call `LLVM::isCompatibleType` to be used instead of
`isa<LLVMType>`. For now, this is strictly equivalent.
END_PUBLIC

Depends On D93681

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D93713
2021-01-05 17:36:54 +01:00
Alex Zinenko 7ed9cfc7b1 [mlir] Remove static constructors from LLVMType
LLVMType contains numerous static constructors that were initially introduced
for API compatibility with LLVM. Most of these merely forward to arguments to
`SpecificType::get` (MLIR defines classes for all types, unlike LLVM IR), while
some introduce subtle semantics differences due to different modeling of MLIR
types (e.g., structs are not auto-renamed in case of conflicts). Furthermore,
these constructors don't match MLIR idioms and actively prevent us from making
the LLVM dialect type system more open. Remove them and use `SpecificType::get`
instead.

Depends On D93680

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D93681
2020-12-23 13:12:47 +01:00
River Riddle 1b97cdf885 [mlir][IR][NFC] Move context/location parameters of builtin Type::get methods to the start of the parameter list
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.

Differential Revision: https://reviews.llvm.org/D93432
2020-12-17 13:01:36 -08:00
Rahul Joshi 563879b6f9 [NFC] Use ConvertOpToLLVMPattern instead of ConvertToLLVMPattern.
- use ConvertOpToLLVMPattern to avoid explicit casting and in most cases the
  constructor can be reused to save a few lines of code.

Differential Revision: https://reviews.llvm.org/D92989
2020-12-10 09:33:43 -08:00
Christian Sigg dcec2ca5bd Remove typeConverter from ConvertToLLVMPattern and use the existing one in ConversionPattern.
ftynse

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D92564
2020-12-04 14:27:16 +01:00
River Riddle 09f7a55fad [mlir][Types][NFC] Move all of the builtin Type classes to BuiltinTypes.h
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.

Differential Revision: https://reviews.llvm.org/D92435
2020-12-03 18:02:10 -08:00
River Riddle 65fcddff24 [mlir][BuiltinDialect] Resolve comments from D91571
* Move ops to a BuiltinOps.h
* Add file comments
2020-11-19 11:12:49 -08:00
Stella Stamenova 332710e704 [mlir] Add a missing dependency to LinalgToLLVM
Generate passes.h before trying to use it

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D91750
2020-11-19 10:30:40 -08:00
River Riddle 73ca690df8 [mlir][NFC] Remove references to Module.h and Function.h
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.

Differential Revision: https://reviews.llvm.org/D91572
2020-11-17 00:55:47 -08:00
River Riddle 3fffffa882 [mlir][Pattern] Add a new FrozenRewritePatternList class
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.

Differential Revision: https://reviews.llvm.org/D89104
2020-10-26 18:01:06 -07:00
Benjamin Kramer 6e2b267d1c Promote transpose from linalg to standard dialect
While affine maps are part of the builtin memref type, there is very
limited support for manipulating them in the standard dialect. Add
transpose to the set of ops to complement the existing view/subview ops.
This is a metadata transformation that encodes the transpose into the
strides of a memref.

I'm planning to use this when lowering operations on strided memrefs,
using the transpose to remove the stride without adding a dependency on
linalg dialect.

Differential Revision: https://reviews.llvm.org/D88651
2020-10-05 10:58:20 +02:00
Geoffrey Martin-Noble d4e889f1f5 Remove `Ops` suffix from dialect library names
Dialects include more than just ops, so this suffix is outdated. Follows
discussion in
https://llvm.discourse.group/t/rfc-canonical-file-paths-to-dialects/621

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D88530
2020-09-30 18:00:44 -07:00
Frederik Gossen 136eb79a88 [MLIR][Standard] Add `dynamic_tensor_from_elements` operation
With `dynamic_tensor_from_elements` tensor values of dynamic size can be
created. The body of the operation essentially maps the index space to tensor
elements.

Declare SCF operations in the `scf` namespace to avoid name clash with the new
`std.yield` operation. Resolve ambiguities between `linalg/shape/std/scf.yield`
operations.

Differential Revision: https://reviews.llvm.org/D86276
2020-09-07 11:44:43 +00:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Mehdi Amini 25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini 2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
River Riddle 9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
River Riddle 8d67d187ba [mlir][DialectConversion] Refactor how block argument types get converted
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.

This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.

This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.

Differential Revision: https://reviews.llvm.org/D81681
2020-06-18 15:59:22 -07:00
Mehdi Amini a9a21bb4b6 Revert "[mlir] Add support for lowering tanh to LLVMIR."
This reverts commit 32c757e4f8.

Broke the build bot:

******************** TEST 'MLIR :: Examples/standalone/test.toy' FAILED ********************
[...]
/tmp/ci-KIMiRFcVZt/lib/libMLIRLinalgToLLVM.a(LinalgToLLVM.cpp.o): In function `(anonymous namespace)::ConvertLinalgToLLVMPass::runOnOperation()':
LinalgToLLVM.cpp:(.text._ZN12_GLOBAL__N_123ConvertLinalgToLLVMPass14runOnOperationEv+0x100): undefined reference to `mlir::populateExpandTanhPattern(mlir::OwningRewritePatternList&, mlir::MLIRContext*)'
2020-06-15 18:46:57 +00:00
Hanhan Wang 32c757e4f8 [mlir] Add support for lowering tanh to LLVMIR.
Summary:
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
   1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
   2) exp^{2x}-1 / exp^{2x}+1  , if x < 0.

Differential Revision: https://reviews.llvm.org/D81618
2020-06-15 10:29:31 -07:00
Jacques Pienaar 2d2c73c5cf [mlir] Remove OperandAdaptor
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.

Differential Revision: https://reviews.llvm.org/D81789
2020-06-15 06:01:31 -07:00
Alex Zinenko 4ead2cf76c [mlir] Rename conversions involving ex-Loop dialect to mention SCF
The following Conversions are affected: LoopToStandard -> SCFToStandard,
LoopsToGPU -> SCFToGPU, VectorToLoops -> VectorToSCF. Full file paths are
affected. Additionally, drop the 'Convert' prefix from filenames living under
lib/Conversion where applicable.

API names and CLI options for pass testing are also renamed when applicable. In
particular, LoopsToGPU contains several passes that apply to different kinds of
loops (`for` or `parallel`), for which the original names are preserved.

Differential Revision: https://reviews.llvm.org/D79940
2020-05-15 10:45:11 +02:00
Nicolas Vasilache f1b972041a [mlir][Linalg] Start a LinalgToStandard pass and move conversion to library calls.
This revision starts decoupling the include the kitchen sink behavior of Linalg to LLVM lowering by inserting a -convert-linalg-to-std pass.

The lowering of linalg ops to function calls was previously lowering to memref descriptors by having both linalg -> std and std -> LLVM patterns in the same rewrite.

When separating this step, a new issue occurred: the layout is automatically type-erased by this process. This revision therefore introduces memref casts to perform these type erasures explicitly. To connect everything end-to-end, the LLVM lowering of MemRefCastOp is relaxed because it is artificially more restricted than the op semantics. The op semantics already guarantee that source and target MemRefTypes are cast-compatible. An invalid lowering test now becomes valid and is removed.

Differential Revision: https://reviews.llvm.org/D79468
2020-05-15 00:24:03 -04:00
Stephen Neuendorffer 5469f434bb [MLIR] Reapply: Adjust libMLIR building to more closely follow libClang
This reverts commit ab1ca6e60f.
2020-05-04 20:47:57 -07:00
Stephen Neuendorffer 146192ade4 [MLIR] Normalize usage of intrinsics_gen
Portions of MLIR which depend on LLVMIR generally need to depend on
intrinsics_gen, to ensure that tablegen'd header files from LLVM are built
first.  Without this, we get errors, typically about llvm/IR/Attributes.inc
not being found.

Note that previously the Linalg Dialect depended on intrinsics_gen, but it
doesn't need to, since it doesn't use LLVMIR.

Differential Revision: https://reviews.llvm.org/D79389
2020-05-04 20:47:57 -07:00
Stephen Neuendorffer ab1ca6e60f Revert "[MLIR] Adjust libMLIR building to more closely follow libClang"
This reverts commit 4f0f436749.

This seems to show some compile dependence problems, and also breaks flang.
2020-05-04 12:40:12 -07:00
Valentin Churavy 4f0f436749 [MLIR] Adjust libMLIR building to more closely follow libClang
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so

After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.

This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.

Differential Revision: https://reviews.llvm.org/D78773

[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB

Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS.  This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary.  Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.

Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library.  Previously, some libraries still used
add_llvm_library.  However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM.  Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR

A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so.  To catch these errors more directly, there's now
mlir_check_all_link_libraries.

To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.

tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.

By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067

[MLIR] Move from using target_link_libraries to LINK_LIBS

This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.

By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243

Three commits have been squashed to avoid intermediate build breakage.
2020-05-04 11:40:46 -07:00
Nicolas Vasilache 0d61dcf606 [mlir][EDSC] Make use of InsertGuard
Summary:
This revision cleans up a layer of complexity in ScopedContext and uses InsertGuard instead of previously manual bookkeeping.
The method `getBuilder` is renamed to `getBuilderRef` and spurious copies of OpBuilder are tracked.

This results in some canonicalizations not happening anymore in the Linalg matmul to vector test. This test is retired because relying on DRRs for this has been shaky at best. The solution will be better support to write fused passes in C++ with more idiomatic pattern composition and application.

Differential Revision: https://reviews.llvm.org/D79208
2020-04-30 18:04:31 -04:00
Nicolas Vasilache 7a80139059 [mlir][Vector] Provide progressive lowering of masked n-D vector transfers
This revision allows masked vector transfers with m-D buffers and n-D vectors to
progressively lower to m-D buffer and 1-D vector transfers.

For a vector.transfer_read, assuming a `memref<(leading_dims) x (major_dims) x (minor_dims) x type>` and a `vector<(minor_dims) x type>` are involved in the transfer, this generates pseudo-IR resembling:
```
     if (any_of(%ivs_major + %offsets, <, major_dims)) {
       %v = vector_transfer_read(
         {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
          %ivs_minor):
         memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
         vector<(minor_dims) x type>;
     } else {
       %v = splat(vector<(minor_dims) x type>, %fill)
     }
```

Differential Revision: https://reviews.llvm.org/D79062
2020-04-29 21:28:27 -04:00