Summary:
Clang tools' diagnostic output could be force colored when a command
line from the compilation database contains -fcolor-diagnostics or
-fdiagnostics-color. This is not what we want e.g. for vim integration.
Reviewers: klimek
Reviewed By: klimek
CC: cfe-commits, revane, jordan_rose
Differential Revision: http://llvm-reviews.chandlerc.com/D917
llvm-svn: 183304
This fixes some of the ridiculously complex code for optimizing the
machine model tables that are shared among all processors of a given
target. A9 and Swift both use the "special" feature that maps old
itinerary classes to new machine model defs. They map different
overlapping subsets of instructions, which wasn't handled correctly.
llvm-svn: 183302
When a function is inlined we lazily construct the variables
representing the function's parameters. After that, we add any remaining
unused parameters.
If the function doesn't use all the parameters, or uses them out of
order, then the DWARF would produce them in that order, producing a
parameter order that doesn't match the source.
This fix causes us to always keep the arg variables at the start of the
variable list & in the original order from the source.
llvm-svn: 183297
In an effort to make -flimit-debug-info more consistent I over-shot the
mark & made types used via typedefs never produce definitions in the
debug info (even if the type was used in a way that would require a
definition).
The fix for this is to do exactly what I was hoping to do at some point
- plumb the declaration/definition choice through the various layers of
"CreateType" in CGDebugInfo. In this way we can produce declarations
whenever they are sufficient & definitions otherwise - including when
qualifiers are used, for example (discovered in PR14467). This may not
be complete (there may be other types/situations where we need to
propagate the "declaration/definition" choice) but it lays the basic
foundation which we can enhance in future iterations.
llvm-svn: 183296
This could actually be implemented with the LLVM IR va_arg instruction,
but it doesn't seem to offer any advantages over accessing the va_list
pointer directly.
Using the va_list pointer directly makes it possible to perform type
coercion directly from the argument array, and the va_list updates are
exposed to the optimizers.
llvm-svn: 183292
Type coercion for argument passing is equivalent to storing the source
type and loading the destination type from the same pointer. On
big-endian targets, this means that the high bits of integers are
preserved.
This patch fixes the CoerceIntOrPtrToIntOrPtr() function on big-endian
targets by inserting the required shift instructions to preserve the
high bits instead of the low bits.
This is used by SparcABIInfo when passing small structs in the high bits
of registers.
llvm-svn: 183291
The 'inreg' attribute can also be applied to function return values in
LLVM IR. The SPARC v9 backend is using the flag when returning structs
containing 32-bit floats.
llvm-svn: 183290
In ELF (as in MachO), not all relocations point to symbols. Represent this
properly by using a symbol_iterator instead of a SymbolRef. Update llvm-readobj
ELF's dumper to handle relocatios without symbols.
llvm-svn: 183284
handle temporaries which have been lifetime-extended to static storage duration
within constant expressions. This correctly handles nested lifetime extension
(through reference members of aggregates in aggregate initializers) but
non-constant-expression emission hasn't yet been updated to do the same.
llvm-svn: 183283
the link register save location being in the link register - in which case we
should iterate down the stack, not recursively try to find the lr in the current
frame over and over.
<rdar://problem/13932954>
llvm-svn: 183282
Two things:
1) fixing a bug where memory read was not clearing the m_force flag after it was passed, so that subsequent memory reads would not need to be forced even if over boundary
2) adding a setting target.max-memory-read-size that you can set instead of the hardcoded 1024 bytes limit we had before
llvm-svn: 183276
Performance timers captured in each transform for all files they process are now collected and arranged per source file in preparation for writing to disk.
This revision is the last piece of the initial implementation of performance timer capturing.
llvm-svn: 183274
If you want to define a formatter for "array of Foo of any size", ordinarily you would say
-x "Foo \[[0-9]+\]"
this checkin allows you to instead say "Foo[]" (or "Foo []") and LLDB will automatically create the regular expression and add the -x flag on your behalf
llvm-svn: 183272