Summary:
After this change, deopt operand bundles can be lowered directly by
SelectionDAG into STATEPOINT instructions (which are then lowered to a
call or sequence of nop, with an associated __llvm_stackmaps entry0.
This obviates the need to round-trip deoptimization state through
gc.statepoint via RewriteStatepointsForGC.
Reviewers: reames, atrick, majnemer, JosephTremoulet, pgavlin
Subscribers: sanjoy, mcrosier, majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D18257
llvm-svn: 264015
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Resubmit of r262103.
Differential Revision: http://reviews.llvm.org/D18341
llvm-svn: 264003
As noted in PR18355, this patch makes it clear that all cases with undef operands have been handled before further constant folding is attempted.
Differential Revision: http://reviews.llvm.org/D18305
llvm-svn: 263994
If we have a BB with only MemoryDefs, live-in calculations will ignore
it. This means we get results like this:
define void @foo(i8* %p) {
; 1 = MemoryDef(liveOnEntry)
store i8 0, i8* %p
br i1 undef, label %if.then, label %if.end
if.then:
; 2 = MemoryDef(1)
store i8 1, i8* %p
br label %if.end
if.end:
; 3 = MemoryDef(1)
store i8 2, i8* %p
ret void
}
...When there should be a MemoryPhi in the `if.end` BB.
This patch fixes that behavior.
llvm-svn: 263991
Summary:
Whole quad mode is already enabled for pixel shaders that compute
derivatives, but it must be suspended for instructions that cause a
shader to have side effects (i.e. stores and atomics).
This pass addresses the issue by storing the real (initial) live mask
in a register, masking EXEC before instructions that require exact
execution and (re-)enabling WQM where required.
This pass is run before register coalescing so that we can use
machine SSA for analysis.
The changes in this patch expose a problem with the second machine
scheduling pass: target independent instructions like COPY implicitly
use EXEC when they operate on VGPRs, but this fact is not encoded in
the MIR. This can lead to miscompilation because instructions are
moved past changes to EXEC.
This patch fixes the problem by adding use-implicit operands to
target independent instructions. Some general codegen passes are
relaxed to work with such implicit use operands.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18162
llvm-svn: 263982
In executable and shared object ELF files, relocations in the file contain the final virtual address rather than section offset so this is adjusted to display section offset.
Differential revision: http://reviews.llvm.org/D15965
llvm-svn: 263971
Summary:
When control flow is implemented using the exec mask, the compiler will
insert branch instructions to skip over the masked section when exec is
zero if the section contains more than a certain number of instructions.
The previous code would only count instructions in successor blocks,
and this patch modifies the code to start counting instructions in all
blocks between the start and end of the branch.
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18282
llvm-svn: 263969
This introduces a custom lowering for ISD::SETCCE (introduced in r253572)
that allows us to emit a short code sequence for 64-bit compares.
Before:
push {r7, lr}
cmp r0, r2
mov.w r0, #0
mov.w r12, #0
it hs
movhs r0, #1
cmp r1, r3
it ge
movge.w r12, #1
it eq
moveq r12, r0
cmp.w r12, #0
bne .LBB1_2
@ BB#1: @ %bb1
bl f
pop {r7, pc}
.LBB1_2: @ %bb2
bl g
pop {r7, pc}
After:
push {r7, lr}
subs r0, r0, r2
sbcs.w r0, r1, r3
bge .LBB1_2
@ BB#1: @ %bb1
bl f
pop {r7, pc}
.LBB1_2: @ %bb2
bl g
pop {r7, pc}
Saves around 80KB in Chromium's libchrome.so.
Some notes on this patch:
- I don't much like the ARMISD::BRCOND and ARMISD::CMOV combines I
introduced (nothing else needs them). However, they are necessary in
order to avoid poor codegen, and they seem similar to existing combines
in other backends (e.g. X86 combines (brcond (cmp (setcc Compare))) to
(brcond Compare)).
- No support for Thumb-1. This is in principle possible, but we'd need
to implement ARMISD::SUBE for Thumb-1.
Differential Revision: http://reviews.llvm.org/D15256
llvm-svn: 263962
Summary:
replaceCongruentIVs can break LCSSA when trying to replace IV increments
since it tries to replace all uses of a phi node with another phi node
while both of the phi nodes are not necessarily in the processed loop.
This will cause an assert in IndVars.
To fix this, we add a check to make sure that the replacement maintains
LCSSA.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18266
llvm-svn: 263941
Summary:
extract_vector_elt can cause an implicit any_ext if the types don't
match. When processing the following pattern:
(and (extract_vector_elt (load ([non_ext|any_ext|zero_ext] V))), c)
DAGCombine was ignoring the possible extend, and sometimes removing
the AND even though it was required to maintain some of the bits
in the result to 0, resulting in a miscompile.
This change fixes the issue by limiting the transformation only to
cases where the extract_vector_elt doesn't perform the implicit
extend.
Reviewers: t.p.northover, jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18247
llvm-svn: 263935
Summary:
The old address space inference pass (NVPTXFavorNonGenericAddrSpaces) is unable
to convert the address space of a pointer induction variable. This patch adds a
new pass called NVPTXInferAddressSpaces that overcomes that limitation using a
fixed-point data-flow analysis (see the file header comments for details).
The new pass is experimental and not enabled by default. Users can turn
it on by setting the -nvptx-use-infer-addrspace flag of llc.
Reviewers: jholewinski, tra, jlebar
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17965
llvm-svn: 263916
Improve computeZeroableShuffleElements to be able to peek through bitcasts to extract zero/undef values from BUILD_VECTOR nodes of different element sizes to the shuffle mask.
Differential Revision: http://reviews.llvm.org/D14261
llvm-svn: 263906
Summary: Also expose getters and setters in the C API, so that the change can be tested.
Reviewers: nhaehnle, axw, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18260
From: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
llvm-svn: 263886
The sinpi/cospi can be replaced with sincospi to remove unnecessary
computations. However, we need to make sure that the calls are within
the same function!
This fixes PR26993.
llvm-svn: 263875
MDString are uniqued in the Context on creation, hashing the
pointer is less expensive than hashing the String itself.
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D16560
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263867
Summary:
This patch changes the computation of the hash key for DISubprogram to
be computed on a small subset of the fields. The hash is computed a
lot faster, but there might be more collision in the table.
However by carefully selecting the fields, colisions should be rare.
Using `opt` to load the IR for FastISelEmitter.cpp.o, with this patch:
- DISubprogram::getImpl() goes from 28ms to 15ms.
- DICompositeType::getImpl() goes from 6ms to 2ms
- DIDerivedType::getImpl() goes from 18 to 12ms
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16571
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263866
Summary:
ThinLTO is relying on linkInModule to import selected function.
However a lot of "magic" was hidden in linkInModule and the IRMover,
who would rename and promote global variables on the fly.
This is moving to an approach where the steps are decoupled and the
client is reponsible to specify the list of globals to import.
As a consequence some test are changed because they were relying on
the previous behavior which was importing the definition of *every*
single global without control on the client side.
Now the burden is on the client to decide if a global has to be imported
or not.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18122
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263863
On Rafael's suggestion!
(also fix a discrepancy between this error message format and the others)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263860
We need to be careful on which registers can be explicitly handled
via copies. Prologue, Epilogue use physical registers and if one belongs
to the set of CSRsViaCopy, it will no longer be CSRed, since PEI overwrites
it after the explicit copies.
llvm-svn: 263857
Avoid modifying other modules in `AArch64PromoteConstant` when the
constant is `ConstantData` (a horrible accident, I'm sure, caught by an
experimental follow-up to r261464).
Previously, this walked through all the users of a constant, but that
reaches into other modules when the constant doesn't depend transitively
on a `GlobalValue`! Since we're walking instructions anyway, just
modify the instructions we actually see.
As a drive-by, instead of storing `Use` and getting the instructions
again via `Use::getUser()` (which is not a constantant time lookup),
store `std::pair<Instruction, unsigned>`. Besides being cheaper, this
makes it easier to drop use-lists form `ConstantData` in the future.
(I threw this in because I was touching all the code anyway.)
Because the patch completely changes the traversal logic, it looks
like a rewrite of the pass, but the core logic is all the same (or
should be, minus the out-of-module changes). In other words, there
should be NFC as long as the LLVMContext only has a single Module.
I didn't think of a good way to test this, but I hope to submit a patch
eventually that makes walking these use-lists illegal/impossible.
llvm-svn: 263853
While not strictly necessary, since we don't support large integer
types, this avoids bugs due to silent truncation from uint64_t to a
32-bit unsigned (e.g. DL.isLegalInteger(DL.getTypeSizeInBits(Ty) )
This fixes PR26972.
Differential Revision: http://reviews.llvm.org/D18258
llvm-svn: 263850
* Renamed to be camel case, consistent with other docs.
* Fixed non-ascii characters (this is what I get for writing docs on an iPad).
llvm-svn: 263840
The loop on IVOperand's incoming values assumes IVOperand to be an
induction variable on the loop over which `S Pred X` is invariant;
otherwise loop invariant incoming values to IVOperand are not guaranteed
to dominate the comparision.
This fixes PR26973.
llvm-svn: 263827
In the <DisplayString> of PointerIntPair , I cast the pointer to the actual type, so VS can leverage it while visualizing, not unlike the recent change to PointerUnion visualization.
In the expansion, the current code is casting to the incorrect type (wrong number of stars), so I fixed that as well.
llvm-svn: 263821
This patch adds unscaled loads and sign-extend loads to the TII
getMemOpBaseRegImmOfs API, which is used to control clustering in the MI
scheduler. This is done to create more opportunities for load pairing. I've
also added the scaled LDRSWui instruction, which was missing from the scaled
instructions. Finally, I've added support in shouldClusterLoads for clustering
adjacent sext and zext loads that too can be paired by the load/store optimizer.
Differential Revision: http://reviews.llvm.org/D18048
llvm-svn: 263819
Summary:
These dependencies would be used in the future to reduce the number
of instrumented blocks(http://reviews.llvm.org/rL262103)
This is submitted as a separate CL because of previous problems with
ARM.
Subscribers: aemerson
Differential Revision: http://reviews.llvm.org/D18227
llvm-svn: 263797
Summary:
Allow the selection of BUFFER_LOAD_FORMAT_x and _XY. Do this now before
the frontend patches land in Mesa. Eventually, we may want to automatically
reduce the size of loads at the LLVM IR level, which requires such overloads,
and in some cases Mesa can generate them directly.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18255
llvm-svn: 263792
Summary:
These intrinsics expose the BUFFER_ATOMIC_* instructions and will be used
by Mesa to implement atomics with buffer semantics. The intrinsic interface
matches that of buffer.load.format and buffer.store.format, except that the
GLC bit is not exposed (it is automatically deduced based on whether the
return value is used).
The change of hasSideEffects is required for TableGen to accept the pattern
that matches the intrinsic.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, rivanvx, llvm-commits
Differential Revision: http://reviews.llvm.org/D18151
llvm-svn: 263791
Summary:
We cannot easily deduce that an offset is in an SGPR, but the Mesa frontend
cannot easily make use of an explicit soffset parameter either. Furthermore,
it is likely that in the future, LLVM will be in a better position than the
frontend to choose an SGPR offset if possible.
Since there aren't any frontend uses of these intrinsics in upstream
repositories yet, I would like to take this opportunity to change the
intrinsic signatures to a single offset parameter, which is then selected
to immediate offsets or voffsets using a ComplexPattern.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18218
llvm-svn: 263790
Now that the resolved path cache stores the StringRef's, its
best to just always cache the results, even when realpath isn't
used. This way we'll still avoid the StringMap hashing and lookup.
This also conveniently reorganises this code in a way I need for
a future patch.
llvm-svn: 263777
ResolvedPaths was storing std::string's as a cache. We would then take those strings and look them up in the internString pool to get a unique StringRef for each path.
This patch changes ResolvedPaths to store the StringRef pointing in to the internString pool itself. This way, when getResolvedPath returns a string, we know we have the StringRef we would find in the pool anyway. We can avoid the duplicate memory of the std::string's, and also the time from the lookup.
Unfortunately my profiles show no runtime change here, but it should still save memory allocations which is nice.
Reviewed by Frederic Riss.
Differential Revision: http://reviews.llvm.org/D18259
llvm-svn: 263774
Summary:
It can hurt performance to prefetch ahead too much. Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.
Reviewers: hfinkel
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17949
llvm-svn: 263772
Summary:
And use this TTI for Cyclone. As it was explained in the original RFC
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758), the HW
prefetcher work up to 2KB strides.
I am also adding tests for this and the previous change (D17943):
* Cyclone prefetching accesses with a large stride
* Cyclone not prefetching accesses with a small stride
* Generic Aarch64 subtarget not prefetching either
Reviewers: hfinkel
Subscribers: aemerson, rengolin, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17945
llvm-svn: 263771
Summary:
This wires up the pass for Cyclone but keeps it off for now because we
need a few more TTIs.
The getPrefetchMinStride value is not very well tuned right now but it
works well with CFP2006/433.milc which motivated this.
Tests will be added as part of the upcoming large-stride prefetching
patch.
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, hfinkel, rengolin
Differential Revision: http://reviews.llvm.org/D17943
llvm-svn: 263770
A virtual index of -1u indicates that the subprogram's virtual index is
unrepresentable (for example, when using the relative vtable ABI), so do
not emit a DW_AT_vtable_elem_location attribute for it.
Differential Revision: http://reviews.llvm.org/D18236
llvm-svn: 263765
MSVC as usual:
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/ADT/STLExtras.h(120):
error C2100: illegal indirection
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/IR/Instructions.h(3966):
note: see reference to class template instantiation
'llvm::mapped_iterator<llvm::User::op_iterator,llvm::CatchSwitchInst::DerefFnTy>'
being compiled
This reverts commit e091dd63f1f34e043748e28ad160d3bc17731168.
llvm-svn: 263760
For fcmp, major concern about the following 6 cases is NaN result. The
comparison result consists of 4 bits, indicating lt, eq, gt and un (unordered),
only one of which will be set. The result is generated by fcmpu
instruction. However, bc instruction only inspects one of the first 3
bits, so when un is set, bc instruction may jump to to an undesired
place.
More specifically, if we expect an unordered comparison and un is set, we
expect to always go to true branch; in such case UEQ, UGT and ULT still
give false, which are undesired; but UNE, UGE, ULE happen to give true,
since they are tested by inspecting !eq, !lt, !gt, respectively.
Similarly, for ordered comparison, when un is set, we always expect the
result to be false. In such case OGT, OLT and OEQ is good, since they are
actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
and ONE are tested through !lt, !gt and !eq, and these are true.
llvm-svn: 263753
idiom.
Most LLVM tool code exits immediately when an error is encountered and prints an
error message to stderr. The ExitOnError class supports this by providing two
call operators - one for Errors, and one for Expected<T>s. Calls to code that
can return Errors (or Expected<T>s) can use these calls to bail out on error,
and otherwise continue as if the operation had succeeded. E.g.
Error foo();
Expected<int> bar();
int main(int argc, char *argv[]) {
ExitOnError ExitOnErr;
ExitOnErr.setBanner(std::string("Error in ") + argv[0] + ":");
// Exit if foo returns an error. No need to manually check error return.
ExitOnErr(foo());
// Exit if bar returns an error, otherwise unwrap the contained int and
// continue.
int X = ExitOnErr(bar());
// ...
return 0;
}
llvm-svn: 263749
Summary:
Use the new LoopVersioning facility (D16712) to add noalias metadata in
the vector loop if we versioned with memchecks. This can enable some
optimization opportunities further down the pipeline (see the included
test or the benchmark improvement quoted in D16712).
The test also covers the bug I had in the initial version in D16712.
The vectorizer did not previously use LoopVersioning. The reason is
that the vectorizer performs its transformations in single shot. It
creates an empty single-block vector loop that it then populates with
the widened, if-converted instructions. Thus creating an intermediate
versioned scalar loop seems wasteful.
So this patch (rather than bringing in LoopVersioning fully) adds a
special interface to LoopVersioning to allow the vectorizer to add
no-alias annotation while still performing its own versioning.
As the vectorizer propagates metadata from the instructions in the
original loop to the vector instructions we also check the pointer in
the original instruction and see if LoopVersioning can add no-alias
metadata based on the issued memchecks.
Reviewers: hfinkel, nadav, mzolotukhin
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17191
llvm-svn: 263744
Summary:
If we decide to version a loop to benefit a transformation, it makes
sense to record the now non-aliasing accesses in the newly versioned
loop. This allows non-aliasing information to be used by subsequent
passes.
One example is 456.hmmer in SPECint2006 where after loop distribution,
we vectorize one of the newly distributed loops. To vectorize we
version this loop to fully disambiguate may-aliasing accesses. If we
add the noalias markers, we can use the same information in a later DSE
pass to eliminate some dead stores which amounts to ~25% of the
instructions of this hot memory-pipeline-bound loop. The overall
performance improves by 18% on our ARM64.
The scoped noalias annotation is added in LoopVersioning. The patch
then enables this for loop distribution. A follow-on patch will enable
it for the vectorizer. Eventually this should be run by default when
versioning the loop but first I'd like to get some feedback whether my
understanding and application of scoped noalias metadata is correct.
Essentially my approach was to have a separate alias domain for each
versioning of the loop. For example, if we first version in loop
distribution and then in vectorization of the distributed loops, we have
a different set of memchecks for each versioning. By keeping the scopes
in different domains they can conveniently be defined independently
since different alias domains don't affect each other.
As written, I also have a separate domain for each loop. This is not
necessary and we could save some metadata here by using the same domain
across the different loops. I don't think it's a big deal either way.
Probably the best is to review the tests first to see if I mapped this
problem correctly to scoped noalias markers. I have plenty of comments
in the tests.
Note that the interface is prepared for the vectorizer which needs the
annotateInstWithNoAlias API. The vectorizer does not use LoopVersioning
so we need a way to pass in the versioned instructions. This is also
why the maps have to become part of the object state.
Also currently, we only have an AA-aware DSE after the vectorizer if we
also run the LTO pipeline. Depending how widely this triggers we may
want to schedule a DSE toward the end of the regular pass pipeline.
Reviewers: hfinkel, nadav, ashutosh.nema
Subscribers: mssimpso, aemerson, llvm-commits, mcrosier
Differential Revision: http://reviews.llvm.org/D16712
llvm-svn: 263743
I hit a crash in the bitcode reader on some corrupt input where an
MDString had somehow been attached to an instruction instead of an
MDNode. This input is pretty bogus, but we shouldn't be crashing on bad
input here.
This change adds error handling in all of the places where we
currently have unchecked casts from Metadata to MDNode, which means
we'll error out instead of crashing for that sort of input.
Unfortunately, I don't have tests. Hitting this requires flipping bits
in the input bitcode, and committing corrupt binary files to catch
these cases is a bit too opaque and unmaintainable.
llvm-svn: 263742
Summary:
The multiprocessing.Queue.put() call can hang if we try queueing all the
tests before starting to take them out of the queue.
The current implementation hangs if tests exceed 2^^15, on Mac OS X.
This might happen with a ninja check-all if one has a bunch of llvm
projects.
Reviewers: delcypher, bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17609
llvm-svn: 263731
Autogenerated from the corresponding assembler tests with a few FIXME added (will fix soon).
Differential Revision: http://reviews.llvm.org/D18249
llvm-svn: 263729
This patch prevents CTR loops optimization when using soft float operations
inside loop body. Soft float operations use function calls, but function
calls are not allowed inside CTR optimized loops.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D17600
llvm-svn: 263727
Summary:
MRI::eliminateFrameIndex can emit several instructions to do address
calculations; these can usually be stackified. Because instructions with
FI operands can have subsequent operands which may be expression trees,
find the top of the leftmost tree and insert the code before it, to keep
the LIFO property.
Also use stackified registers when writing back the SP value to memory
in the epilog; it's unnecessary because SP will not be used after the
epilog, and it results in better code.
Differential Revision: http://reviews.llvm.org/D18234
llvm-svn: 263725
Symmary:
ds_permute/ds_bpermute do not read memory so s_waitcnt is not needed.
Reviewers
arsenm, tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18197
llvm-svn: 263720
Summary:
As explained by the comment, threads will typically see different values
returned by atomic instructions even if the arguments are equal.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18156
llvm-svn: 263719
We were being too aggressive in trying to combine a shuffle into a blend-with-zero pattern, often resulting in a endless loop of contrasting combines
This patch stops the combine if we already have a blend in place (means we miss some domain corrections)
llvm-svn: 263717
This is similar to D18133 where we allowed profile weights on select instructions.
This extends that change to also allow the 'unpredictable' attribute of branches to apply to selects.
A test to check that 'unpredictable' metadata is preserved when cloning instructions was checked in at:
http://reviews.llvm.org/rL263648
Differential Revision: http://reviews.llvm.org/D18220
llvm-svn: 263716
The two changes together weakened the test and caused a regression with division
handling in MSVC mode. They were applied to avoid an assertion being triggered
in the block frequency analysis. However, the underlying problem was simply
being masked rather than solved properly. Address the actual underlying problem
and revert the changes. Rather than analyze the cause of the assertion, the
division failure was assumed to be an overflow.
The underlying issue was a subtle bug in the BB construction in the emission of
the div-by-zero check (WIN__DBZCHK). We did not construct the proper successor
information in the basic blocks, nor did we update the PHIs associated with the
basic block when we split them. This would result in assertions being triggered
in the block frequency analysis pass.
Although the original tests are being removed, the tests themselves performed
very little in terms of validation but merely tested that we did not assert when
generating code. Update this with new tests that actually ensure that we do not
regress on the code generation.
llvm-svn: 263714
It might be hard to recognize a hexadecimal number without '0x' prefix.
Besides that '0x' prefix corresponds to GNU objdump behaviour.
Differential Revision: http://reviews.llvm.org/D18207
llvm-svn: 263705
That allows, for example, to print hex-formatted immediates using
llvm-objdump --print-imm-hex command line option.
Differential Revision: http://reviews.llvm.org/D18195
llvm-svn: 263704
Summary:
This should eliminate all occurrences of this within LLVMMipsAsmParser.
This patch is in response to http://reviews.llvm.org/D17983. I was unable
to reproduce the warnings on my machine so please advise if this fixes the
warnings.
Reviewers: ariccio, vkalintiris, dsanders
Subscribers: dblaikie, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18087
llvm-svn: 263703
The section alignment field was marked optional but not provided a
default value: initialize it with 0.
While we are here, ensure that the section alignment is plausible.
llvm-svn: 263692
This splits out the logic that maps the `"statepoint-id"` attribute into
the actual statepoint ID, and the `"statepoint-num-patch-bytes"`
attribute into the number of patchable bytes the statpeoint is lowered
into. The new home of this logic is in IR/Statepoint.cpp, and this
refactoring will support similar functionality when lowering calls with
deopt operand bundles in the future.
llvm-svn: 263685
The allocator here can still be a nullptr, but this atleast makes the
single caller which needed nullptr be explicit about it.
Note, lld started always passing a parameter here as of r263680. If
anything builds out of sync, that would be why errors may occur.
llvm-svn: 263681
In lld we allocate atoms on an allocator and so don't run their
destructors. This means we also shouldn't allocate memory inside
them without that also being on an allocator.
Reviewed by Lang Hames and Rafael Espindola.
llvm-svn: 263676
Summary: If TBAA is on an intrinsic and it gets upgraded and drops the TBAA we hit an odd assert. We should just upgrade the TBAA first because it doesn't have side-effects.
Reviewers: reames, apilipenko, manmanren
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18229
llvm-svn: 263673
Summary:
This is a step towards implementing "direct" lowering of calls and
invokes with deopt operand bundles into STATEPOINT nodes (as opposed to
having them mandatorily pass through RewriteStatepointsForGC, which is
the case today).
This change extracts out a `SelectionDAGBuilder::LowerAsStatepoint`
helper function that is able to lower a "statepoint like thing", and
uses it to lower `gc.statepoint` calls. This is an NFC now, but in a
later change we will use `LowerAsStatepoint` to directly lower calls and
invokes with operand bundles without going through an intermediate
`gc.statepoint` IR representation.
FYI: I expect `SelectionDAGBuilder::StatepointInfo` will evolve as I add
support for lowering non gc.statepoints, right now it is fairly tightly
coupled with an IR level `gc.statepoint`.
Reviewers: reames, pgavlin, JosephTremoulet
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18106
llvm-svn: 263671
I'm testing out a script that auto-generates the check lines.
It's 98% copied from utils/update_llc_test_checks.py.
If others think this is useful, please let me know.
llvm-svn: 263668
I'm testing out a script that auto-generates the check lines.
It's 98% copied from utils/update_llc_test_checks.py.
If others think this is useful, please let me know.
llvm-svn: 263667
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
SelectionDAGBuilder::populateCallLoweringInfo is now used instead of
SelectionDAGBuilder::lowerCallOperands. The populateCallLoweringInfo
interface is more composable in face of design changes like
http://reviews.llvm.org/D18106
llvm-svn: 263663
The swift frontend needs to be able to look up PGO function name
variables based on the original raw function name. That's because it's
not possible to create PGO function name variables while emitting swift
IR. Instead, we have to create the name variables while lowering swift
IR to llvm IR, at which point we fix up all calls to the increment
intrinsic to point to the right name variable.
llvm-svn: 263662
Summary:
Uniform loops where the branch leaving the loop is predicated on VCCNZ
must be skipped if EXEC = 0, otherwise they will be infinite.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18137
llvm-svn: 263658
Summary:
Fix LSRInstance::HoistInsertPosition() to check the original insert
position block first for a canonical insertion point that is dominated
by all inputs. This leads to SCEV being able to reuse more instructions
since it currently tracks the instructions it creates for reuse by
keeping a table of <Value, insert point> pairs.
Reviewers: atrick
Subscribers: mcrosier, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18001
llvm-svn: 263644
And emit an error if it fails.
This prevents illegal instructions from getting sent to the GPU, which
would potentially result in a hang.
This is a candidate for the stable branch(es).
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
llvm-svn: 263627
Fork off compatibility.ll for the 3.8 release. The *.bc file in this
commit was produced using a Release build of the release_38 branch.
llvm-svn: 263620
This patch introduces the Error classs for lightweight, structured,
recoverable error handling. It includes utilities for creating, manipulating
and handling errors. The scheme is similar to exceptions, in that errors are
described with user-defined types. Unlike exceptions however, errors are
represented as ordinary return types in the API (similar to the way
std::error_code is used).
For usage notes see the LLVM programmer's manual, and the Error.h header.
Usage examples can be found in unittests/Support/ErrorTest.cpp.
Many thanks to David Blaikie, Mehdi Amini, Kevin Enderby and others on the
llvm-dev and llvm-commits lists for lots of discussion and review.
llvm-svn: 263609
We can currently only match zeroable vector elements of the same size as the shuffle type - these tests demonstrate the problem and a solution will be shortly added in an updated D14261
llvm-svn: 263606
The latent bug that LLE exposed in the LoopVectorizer was resolved
(PR26952).
The pass can be disabled with -mllvm -enable-loop-load-elim=0
llvm-svn: 263595
There is something strange going on with debug info (.eh_frame_hdr)
disappearing when msan.module_ctor are placed in comdat sections.
Moving this functionality under flag, disabled by default.
llvm-svn: 263579
Annoyingly, ErrorOr allows to *not check* the error when things go
well. It will crash badly when there is an error though. It should
runtime assert when it is used without being checked!
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263577
Record all variable defs with a summary record to aid in building a
complete reference graph and locating constant variable defs to import.
llvm-svn: 263576
Summary: This change adds a PACKAGE_VENDOR variable. When set it makes the version output more closely resemble the clang version output.
Reviewers: aprantl, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18159
llvm-svn: 263566
This was a latent bug that got exposed by the change to add LoopSimplify
as a dependence to LoopLoadElimination. Since LoopInfo was corrupted
after LV, LoopSimplify mis-compiled nbench in the test-suite (more
details in the PR).
The problem was that when we create the blocks for predicated stores we
didn't add those to any loops.
The original testcase for store predication provides coverage for this
assuming we verify LI on the way out of LV.
Fixes PR26952.
llvm-svn: 263565
Summary:
Static LDS size is saved in MachineFunctionInfo::LDSSize,
We define a pseudo instruction with usesCustomInserter bit set. Then, in EmitInstrWithCustomInserter,
we replace this pseudo instruction with a mov of MachineFunctionInfo::LDSSize.
Reviewers:
arsenm
tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18064
llvm-svn: 263563
The PE TLS directory contains information about where the TLS data
resides in the image, what functions should be executed when threads are
created, etc.
llvm-svn: 263537
Summary:
LLVMGetTargetDataLayout was removed from the C API,
and then TargetMachine.TargetData was removed. Later,
LLVMCreateTargetMachineData was added to the C API,
and we now expose this via the Go API.
Reviewers: deadalnix, pcc
Subscribers: cierniak, llvm-commits, axw
Differential Revision: http://reviews.llvm.org/D18173
llvm-svn: 263530
Since the static getGlobalIdentifier and getGUID methods are now called
for global values other than functions, reflect that by moving these
methods to the GlobalValue class.
llvm-svn: 263524
In some places, like InstCombine, we resize a DenseMap to fit the elements
we intend to put in it, then insert those elements (to avoid continual
reallocations as it grows). But .resize(foo) doesn't actually do what
people think; it resizes to foo buckets (which is really an
implementation detail the user of DenseMap probably shouldn't care about),
not the space required to fit foo elements. DenseMap grows if 3/4 of its
buckets are full, so this actually causes one forced reallocation every
time instead of avoiding a reallocation.
This patch makes .resize(foo) do the intuitive thing: it grows to the size
necessary to fit foo elements without new allocations.
Also include a test to verify that .resize() actually does what we think it
does.
llvm-svn: 263522
This patch adds support for the MachO .alt_entry assembly directive, and uses
it for global aliases with non-zero GEP offsets. The alt_entry flag indicates
that a symbol should be layed out immediately after the preceding symbol.
Conceptually it introduces an alternate entry point for a function or data
structure. E.g.:
safe_foo:
// check preconditions for foo
.alt_entry fast_foo
fast_foo:
// body of foo, can assume preconditions.
The .alt_entry flag is also implicitly set on assembly aliases of the form:
a = b + C
where C is a non-zero constant, since these have the same effect as an
alt_entry symbol: they introduce a label that cannot be moved relative to the
preceding one. Setting the alt_entry flag on aliases of this form fixes
http://llvm.org/PR25381.
llvm-svn: 263521
Instead of running an explicit loop over `gc.relocate` calls hanging off
of a `gc.statepoint`, assert the validity of the type of the value being
relocated in `visitRelocate`.
llvm-svn: 263516
`MCSymbolRefExpr` variant kind for TLSCALL is prefixed with
_ARM_ since this is how it was originally implemented.
The X86_64 version is exactly the same so there's no reason
to create a new variant, we can just rename the existing
one to be machine-independent.
This generalization is the first step to implement support
for GNU2 TLS dialect in MC.
Differential Revision: http://reviews.llvm.org/D18160
llvm-svn: 263515
(Resubmitting after fixing missing file issue)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263513
Summary:
Specifically, when we perform runtime loop unrolling of a loop that
contains a convergent op, we can only unroll k times, where k divides
the loop trip multiple.
Without this change, we'll happily unroll e.g. the following loop
for (int i = 0; i < N; ++i) {
if (i == 0) convergent_op();
foo();
}
into
int i = 0;
if (N % 2 == 1) {
convergent_op();
foo();
++i;
}
for (; i < N - 1; i += 2) {
if (i == 0) convergent_op();
foo();
foo();
}.
This is unsafe, because we've just added a control-flow dependency to
the convergent op in the prelude.
In general, runtime unrolling loops that contain convergent ops is safe
only if we don't have emit a prelude, which occurs when the unroll count
divides the trip multiple.
Reviewers: resistor
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17526
llvm-svn: 263509
These types are defined in ELFFile, so in order to use them, you have
to write ELFFile<ELFT>::SomeType. But there seems to be no reason to have
ELFFile have these types. This patch allows you to write ELFT::SomeType
instead.
This simplifies libObject users.
This is an example: http://reviews.llvm.org/D18129http://reviews.llvm.org/D18130
llvm-svn: 263504
Summary: This now try to reorder instructions in order to help create the optimizable pattern.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph, majnemer
Differential Revision: http://reviews.llvm.org/D16523
llvm-svn: 263503
Summary:
This form was replaced by a form taking an instruction instead of opcode and
return type in r258391. After committing this change (and some depending,
follow-up changes) it turned out in the review thread to be controversial. The
discussion didn't come to a conclusion yet. I'm re-adding the old form to fix
the API regression and to provide a better base for discussion, possibly on
llvm-dev.
A difference to the original function is that it can't be called with GEPs
(similarly to how it was already the case for compares). In order to support
opaque pointers in the future, folding GEPs needs to be passed the source
element type, which is not possible with the current API.
Reviewers: dberlin, reames
Subscribers: dblaikie, eddyb
Differential Revision: http://reviews.llvm.org/D17901
llvm-svn: 263501
If anybody is actually using this, it probably doesn't do what they
think it does. This actually causes the dylib to *export* a
__cxa_atexit symbol, so anything that links it probably loses their
exit time destructors as well as disabling LLVM's.
This just removes the option entirely. If somebody does need this
behaviour we should figure out a more principled way to do it.
This is effectively a revert of r223805.
llvm-svn: 263498
Summary:
llvm-config --libs does not produce correct output since commit r260263
(llvm-config: Add preliminary Windows support) changed naming format of
the libraries. This patch updates llvm-config to recognize new naming
format and output correct linker flags.
Ref: https://llvm.org/bugs/show_bug.cgi?id=26581
Patch by Vedran Miletić
Reviewers: ehsan, rnk, pxli168
Subscribers: pxli168
Differential Revision: http://reviews.llvm.org/D17300
llvm-svn: 263497
Summary: There are places in MachineBlockPlacement where a worklist is filled in pretty much identical way. The code is duplicated. This refactor it so that the same code is used in both scenarii.
Reviewers: chandlerc, majnemer, rafael, MatzeB, escha, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18077
llvm-svn: 263495
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
Summary:
This check was added in rL152620, and has started causing downstream warnings in Julia:
```
In file included from /home/tkelman/Julia/julia-0.5/src/codegen.cpp:22:0:
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h:84:5: warning: "LLVM_USE_INTEL_JITEVENTS" is not defined [-Wundef]
#if LLVM_USE_INTEL_JITEVENTS
^
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h💯5: warning: "LLVM_USE_OPROFILE" is not defined [-Wundef]
#if LLVM_USE_OPROFILE
^
```
Patch by Tony Kelman.
Reviewers: loladiro
Differential Revision: http://reviews.llvm.org/D17254
llvm-svn: 263487
As noted in:
https://llvm.org/bugs/show_bug.cgi?id=26636
This doesn't accomplish anything on its own. It's the first step towards preserving
and using branch weights with selects.
The next step would be to make sure we're propagating the info in all of the other
places where we create selects (SimplifyCFG, InstCombine, etc). I don't think there's
an easy fix to make this happen; we have to look at each transform individually to
determine how to correctly propagate the weights.
Along with that step, we need to then use the weights when making subsequent transform
decisions such as discussed in http://reviews.llvm.org/D16836.
The inliner test is independent but closely related. It verifies that metadata is
preserved when both branches and selects are cloned.
Differential Revision: http://reviews.llvm.org/D18133
llvm-svn: 263482
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
Some instructions were missing isBranch, isCall, or isTerminator
flags. This didn't really affect code generation since most of
the affected patterns were used only for the AsmParser and/or
disassembler.
However, it could affect tools using the MC layer to disassemble
and parse binary code (e.g. via MCInstrDesc::mayAffectControlFlow).
llvm-svn: 263478
The bad behavior happens when we have a function with a long linear chain of
basic blocks, and have a live range spanning most of this chain, but with very
few uses.
Let say we have only 2 uses.
The Hopfield network is only seeded with two active blocks where the uses are,
and each iteration of the outer loop in `RAGreedy::growRegion()` only adds two
new nodes to the network due to the completely linear shape of the CFG.
Meanwhile, `SpillPlacer->iterate()` visits the whole set of discovered nodes,
which adds up to a quadratic algorithm.
This is an historical accident effect from r129188.
When the Hopfield network is expanding, most of the action is happening on the
frontier where new nodes are being added. The internal nodes in the network are
not likely to be flip-flopping much, or they will at least settle down very
quickly. This means that while `SpillPlacer->iterate()` is recomputing all the
nodes in the network, it is probably only the two frontier nodes that are
changing their output.
Instead of recomputing the whole network on each iteration, we can maintain a
SparseSet of nodes that need to be updated:
- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its neighbors are
added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.
The result of Hopfield iterations is not necessarily exact. It should converge
to a local minimum, but there is no guarantee that it will find a global
minimum. It is possible that updating nodes in a different order will cause us
to switch to a different local minimum. In other words, this is not NFC, but
although I saw a few runtime improvements and regressions when I benchmarked
this change, those were side effects and actually the performance change is in
the noise as expected.
Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his feedbacks,
guidance and time for the review.
llvm-svn: 263460
When the SP in not changed because of realignment/VLAs etc., we restore the SP
by using the previous value of SP and not the FP. Breaking the dependency will
help in cases when the epilog of a callee is close to the epilog of the caller;
for then "sub sp, fp, #" depends on the load restoring the FP in the epilog of
the callee.
http://reviews.llvm.org/D18060
Patch by Aditya Kumar and Evandro Menezes.
llvm-svn: 263458
Converting masked vector loads to regular vector loads for x86 AVX should always be a win.
I raised the legality issue of reading the extra memory bytes on llvm-dev. I did not see any
objections.
1. x86 already does this kind of optimization for multiple scalar loads -> vector load.
2. If other targets have the same flexibility, we could move this transform up to CGP or DAGCombiner.
Differential Revision: http://reviews.llvm.org/D18094
llvm-svn: 263446
Summary:
MIPSR6 introduces a class of branches called compact branches. Unlike the
traditional MIPS branches which have a delay slot, compact branches do not
have a delay slot. The instruction following the compact branch is only
executed if the branch is not taken and must not be a branch.
It works by generating compact branches for MIPS32R6 when the delay slot
filler cannot fill a delay slot. Then, inspecting the generated code for
forbidden slot hazards (a compact branch with an adjacent branch or other
CTI) and inserting nops to clear this hazard.
Patch by Simon Dardis.
Reviewers: vkalintiris, dsanders
Subscribers: MatzeB, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16353
llvm-svn: 263444
Summary:
When multiple threads perform an atomic op with the same arguments, they
will usually see different return values.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18101
llvm-svn: 263440
On the z13, it turns out to be more efficient to access a full
floating-point register than just the upper half (as done e.g.
by the LE and LER instructions).
Current code already takes this into account when loading from
memory by using the LDE instruction in place of LE. However,
we still generate LER, which shows the same performance issues
as LE in certain circumstances.
This patch changes the back-end to emit LDR instead of LER to
implement FP32 register-to-register copies on z13.
llvm-svn: 263431
Summary:
With the addition of checks to ensure that operands have a strict ordering
it has become tricky to manage the order in the way I originally intended.
This patch linearizes the ordering which simplifies the implementation but
requires an order that is arbitrary in places. Here are some examples:
* uimm4 < uimm5 < uimm6
* simm4 < uimm4 < simm5 < uimm5
* uimm5 < uimm5_plus1 (1..32) < uimm5_plus32 (32..63) < uimm6
The term 'superset' starts to break down here since the *_plus* classes
are not true supersets of uimm5 (but they are still subsets of uimm6).
* uimm5 < uimm5_64, and uimm5 < vsplat_uimm5
This is entirely arbitrary. We need an ordering and what we pick is
unimportant since only one is possible for a given mnemonic.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D17723
llvm-svn: 263423
s_bitset0_b64, s_bitset1_b64 has 32-bit src0, not 64-bit.
s_rfe_b64 has just one destination operand and no source.
Uncomment S_BITCMP* and S_SETVSKIP, adjust SOPC_* classes for that.
Add s_memrealtime test and change comments in smem.s to follow common style.
Change test for s_memtime to use non-zero register to make it really test encoding.
Add tests for s_buffer_load*.
Add tests for SOPC instructions (same for SI and VI)
Differential Revision: http://reviews.llvm.org/D18040
llvm-svn: 263420
It's failing to build on VS2015 with:
C:\b\build\slave\ClangToTWin\build\src\third_party\llvm\lib\Target\WebAssembly\WebAssemblyRegStackify.cpp(520):
error C2668: 'llvm::make_reverse_iterator': ambiguous call to overloaded function
C:\b\build\slave\ClangToTWin\build\src\third_party\llvm\include\llvm/ADT/STLExtras.h(217):
note: could be 'std::reverse_iterator<llvm::MachineBasicBlock::iterator>
llvm::make_reverse_iterator<llvm::MachineInstrBundleIterator<llvm::MachineInstr>>(IteratorTy)'
with
[
IteratorTy=llvm::MachineInstrBundleIterator<llvm::MachineInstr>
]
C:\b\depot_tools\win_toolchain\vs_files\391bbf1220d3edcd3cc3fccdb56224181e3b13a7\win_sdk\bin\..\..\VC\include\xutility(1217):
note: or 'std::reverse_iterator<llvm::MachineBasicBlock::iterator>
std::make_reverse_iterator<llvm::MachineInstrBundleIterator<llvm::MachineInstr>>(_RanIt)' [found using argument-dependent lookup]
with
[
_RanIt=llvm::MachineInstrBundleIterator<llvm::MachineInstr>
]
I don't have VS2015 locally at the moment, but hopefully this will help.
llvm-svn: 263418
The motivating example is this
for (j = n; j > 1; j = i) {
i = j / 2;
}
The signed division is safely to be changed to an unsigned division (j is known
to be larger than 1 from the loop guard) and later turned into a single shift
without considering the sign bit.
llvm-svn: 263406
Summary: This comes from work to make attribute manipulable via the C API.
Reviewers: gottesmm, hfinkel, baldrick, echristo, tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18128
llvm-svn: 263404
Summary:
There is no definition about MinLatency any more.
Reviewers: mcrosier, spatel, hfinkel
Differential Revision: http://reviews.llvm.org/D18079
llvm-svn: 263403
For cases where we are truncating an integer vector arithmetic result, it may be better to pre-truncate the input operands - no code to support this yet (scalar is done with SimplifyDemandedBits but adding vector support could be a lot of work) but these tests represent the current codegen status.
Example bugs: PR14666, PR22703
llvm-svn: 263384
The SSE41 v8i16 shift lowering using (v)pblendvb is great for non-constant shift amounts, but if it is constant then we can efficiently reduce the VSELECT to shuffles with the pre-SSE41 lowering.
llvm-svn: 263383
Fundamentally, the length of a variable or function name is bound by the
maximum size of a record: 0xffff. However, the name doesn't live in a
vacuum; other data is associated with the name, lowering the bound
further.
We would naively attempt to emit the name, causing us to assert because
the record would no-longer fit in 16-bits. Instead, truncate the name
but preserve as much as we can.
While I have tested this locally, I've decided to not commit it due to
the test's size.
N.B. While this behavior is undesirable, it is better than MSVC's
behavior. They seem to truncate to ~4000 characters.
llvm-svn: 263378
It had a weird artificial limitation on the write side: the comdat name
couldn't be bigger than 2**16. However, the reader had no such
limitation. Make the reader and the writer agree.
llvm-svn: 263377
This follows up on the related AVX instruction transforms, but this
one is too strange to do anything more with. Intel's behavioral
description of this instruction in its Software Developer's Manual
is tragi-comic.
llvm-svn: 263340
This patch corresponds to review:
http://reviews.llvm.org/D17712
We were not clearing the TOC vector in PPCAsmPrinter when initializing it. This
caused duplicate definition asserts when the pass is reused on the module
(i.e. with -compile-twice or in JIT contexts).
llvm-svn: 263338
This lets us for example start running the unit test suite early. For
'check-llvm' on my machine, this drops the tim e from 44s to 32s!!!!!
It's pretty ugly. I barely know how to write Python, so feel free to
just tell me how I should write it instead. =D Thanks to Filipe and
others for help.
Differential Revision: http://reviews.llvm.org/D18089
llvm-svn: 263329
cmpxchg[8|16]b uses RBX as one of its argument.
In other words, using this instruction clobbers RBX as it is defined to hold one
the input. When the backend uses dynamically allocated stack, RBX is used as a
reserved register for the base pointer.
Reserved registers have special semantic that only the target understands and
enforces, because of that, the register allocator don’t use them, but also,
don’t try to make sure they are used properly (remember it does not know how
they are supposed to be used).
Therefore, when RBX is used as a reserved register but defined by something that
is not compatible with that use, the register allocator will not fix the
surrounding code to make sure it gets saved and restored properly around the
broken code. This is the responsibility of the target to do the right thing with
its reserved register.
To fix that, when the base pointer needs to be preserved, we use a different
pseudo instruction for cmpxchg that save rbx.
That pseudo takes two more arguments than the regular instruction:
- One is the value to be copied into RBX to set the proper value for the
comparison.
- The other is the virtual register holding the save of the value of RBX as the
base pointer. This saving is done as part of isel (i.e., we emit a copy from
rbx).
cmpxchg_save_rbx <regular cmpxchg args>, input_for_rbx_reg, save_of_rbx_as_bp
This gets expanded into:
rbx = copy input_for_rbx_reg
cmpxchg <regular cmpxchg args>
rbx = save_of_rbx_as_bp
Note: The actual modeling of the pseudo is a bit more complicated to make sure
the interferes that appears after the pseudo gets expanded are properly modeled
before that expansion.
This fixes PR26883.
llvm-svn: 263325
commit ae14bf6488e8441f0f6d74f00455555f6f3943ac
Author: Mehdi Amini <mehdi.amini@apple.com>
Date: Fri Mar 11 17:15:50 2016 +0000
Remove PreserveNames template parameter from IRBuilder
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263258
91177308-0d34-0410-b5e6-96231b3b80d8
until we can figure out what to do about clang and Release build testing.
This reverts commit 263258.
llvm-svn: 263321
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
llvm-svn: 263318
Summary:
Caller can provides the list of .so files where some files are
unreadable (e.g linux-vdso.so.1). It's more convenient to handler this in
sancov with warning then making all callers to check files.
Reviewers: aizatsky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18103
llvm-svn: 263307
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 263303
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
Value profile instrumentation treats inline asm calls like they are
indirect calls. This causes problems when the 'Callee' is passed to a
ptrtoint cast -- the verifier rightly claims that this is bogus and
crashes opt.
llvm-svn: 263278
Summary:
This patch adds support for including a full reference graph including
call graph edges and other GV references in the summary.
The reference graph edges can be used to make importing decisions
without materializing any source modules, can be used in the plugin
to make file staging decisions for distributed build systems, and is
expected to have other uses.
The call graph edges are recorded in each function summary in the
bitcode via a list of <CalleeValueIds, StaticCount> tuples when no PGO
data exists, or <CalleeValueId, StaticCount, ProfileCount> pairs when
there is PGO, where the ValueId can be mapped to the function GUID via
the ValueSymbolTable. In the function index in memory, the call graph
edges reference the target via the CalleeGUID instead of the
CalleeValueId.
The reference graph edges are recorded in each summary record with a
list of referenced value IDs, which can be mapped to value GUID via the
ValueSymbolTable.
Addtionally, a new summary record type is added to record references
from global variable initializers. A number of bitcode records and data
structures have been renamed to reflect the newly expanded scope of the
summary beyond functions. More cleanup will follow.
Reviewers: joker.eph, davidxl
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17212
llvm-svn: 263275
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263258
Summary:
Following r263086, we are replacing this by a runtime check.
More cleanup will follow on the IRBuilder itself, but I submitted
this patch separately as SROA has a fancy "prefixInserter" class
that needs extra-love.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18022
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263256
The truncation was causing the sorting algorithm to behave oddly when comparing
positive and negative offsets. Fortunately, this doesn't currently happen in
practice and was exposed by a WIP. Thus, I can't test this change now, but the
follow on patch will.
llvm-svn: 263255
member type.
Because of how this type is used by the ValueTable, it cannot actually
have hidden visibility. GCC actually nicely warns about this but Clang
just silently ... I don't even know. =/ We should do a better job either
way though.
This should resolve a bunch of the GCC warnings about visibility that
the port of GVN triggered and make the visibility story a bit more
correct.
llvm-svn: 263250
Added new string conversion wrappers that convert between `std::string` (of UTF-8 bytes) and `std::wstring`, which is particularly useful for Win32 interop. Also fixed a missing string conversion for `getenv` on Win32, using these new wrappers.
The motivation behind this is to provide the support functions required for LLDB to work properly on Windows with non-ASCII data; however, the functions are not LLDB specific.
Patch by cameron314
Differential Revision: http://reviews.llvm.org/D17549
llvm-svn: 263247
Its not enough that we test for SSSE3 - that's only OK for 128-bit vectors - we also need to test for AVX2 / AVX512BW for 256/512 bit vector cases.
llvm-svn: 263239
This doesn't change how many times we construct domtrees in the normal
pipeline, and it removes fragility and instability where basic-aa may
not be run in time to see domtrees because they happen to be constructed
afterward.
This isn't quite as clean as the change to memdep because there is
a mode where basic-aa specifically runs without domtrees -- in the
hacking version used by function-attrs with the legacy pass manager.
llvm-svn: 263234
This doesn't cause us to construct dominator trees any more often in the
normal pipeline, and removes an entire mode of memdep that needed to be
reasoned about and maintained. Perhaps more importantly, it removes the
ability for the results of memdep to be different because of accidental
pass scheduling goofs or the order of evaluation of 'getResult' calls.
Essentially, 'getCachedResult', unless across IR-unit boundaries, is
extremely dangerous. We need to work much harder to avoid it (or its
analog in the old pass manager).
llvm-svn: 263232
much to my horror, so use variables to fix it in place.
This terrifies me. Both basic-aa and memdep will provide more precise
information when the domtree and/or the loop info is available. Because
of this, if your pass (like GVN) requires domtree, and then queries
memdep or basic-aa, it will get more precise results. If it does this in
the other order, it gets less precise results.
All of the ideas I have for fixing this are, essentially, terrible. Here
I've just caused us to stop having unspecified behavior as different
implementations evaluate the order of these arguments differently. I'm
actually rather glad that they do, or the fragility of memdep and
basic-aa would have gone on unnoticed. I've left comments so we don't
immediately break this again. This should fix bots whose host compilers
evaluate the order of arguments differently from Clang.
llvm-svn: 263231
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
clarify their purpose.
Firstly, call them "...Mixin" types so it is clear that there is no
type hierarchy being formed here. Secondly, use the term 'Info' to
clarify that they aren't adding any interesting *semantics* to the
passes or analyses, just exposing APIs used by the management layer to
get information about the pass or analysis.
Thanks to Manuel for helping pin down the naming confusion here and come
up with effective names to address it.
In case you already have some out-of-tree stuff, the following should be
roughly what you want to update:
perl -pi -e 's/\b(Pass|Analysis)Base\b/\1InfoMixin/g'
llvm-svn: 263217
work in the face of the limitations of DLLs and templated static
variables.
This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).
I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.
This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.
llvm-svn: 263216
Since the names are used in a loop this does more work in debug builds. In
release builds value names are generally discarded so we don't have to do
the concatenation at all. It's also simpler code, no functional change
intended.
llvm-svn: 263215
The constant is now at source operand 1 (previously at 2).
This is also how it is in legacy AMD sp3 assembler.
Update tests.
Differential Revision: http://reviews.llvm.org/D17984
llvm-svn: 263212
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
Frontend authors are strongly encouraged to keep allocas
in the entry block, so don't bother visiting every instruction
in the other blocks of the function.
llvm-svn: 263206
llvm::getDISubprogram walks the instructions in a function, looking for one in the scope of the current function, so that it can find the !dbg entry for the subprogram itself.
Now that !dbg is attached to functions, this should not be necessary. This patch changes all uses to just query the subprogram directly on the function.
Ideally this should be NFC, but in reality its possible that a function:
has no !dbg (in which case there's likely a bug somewhere in an opt pass), or
that none of the instructions had a scope referencing the function, so we used to not find the !dbg on the function but now we will
Reviewed by Duncan Exon Smith.
Differential Revision: http://reviews.llvm.org/D18074
llvm-svn: 263184
LLVM Gold plugin decides which instance of a common symbol it wants
based on the symbol size in claim_file_hook. If the file that
contains the chosen instance is later dropped from the link, we end
up with an undefined reference.
This change delays this decision until the set of the included files
is known.
llvm-svn: 263180
The code assumed that we always had a preheader without making the pass
dependent on LoopSimplify.
Thanks to Mattias Eriksson V for reporting this.
llvm-svn: 263173
Looking at the IR definition of a masked load made me realize
there was no reason to use a shuffle here, so we don't need
to convert the format of the mask at all.
llvm-svn: 263167
Generalise the existing SIGN_EXTEND to SIGN_EXTEND_VECTOR_INREG combine to support zero extension as well and get rid of a lot of unnecessary ANY_EXTEND + mask patterns.
Reapplied with a fix for PR26870 (avoid premature use of TargetConstant in ZERO_EXTEND_VECTOR_INREG expansion).
Differential Revision: http://reviews.llvm.org/D17691
llvm-svn: 263159
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 263158
Summary:
Unless we plan to do later postpass metadata linking (ThinLTO special mode),
always invoke metadata materialization at the start of IRLinker::run().
This avoids the need for clients who use lazy metadata loading to
explicitly invoke materializeMetadata before the IRMover, which in
turn invokes IRLinker::run and needs materialized metadata for mapping.
Came up in the context of an LLD issue (D17982).
Reviewers: rafael
Subscribers: silvas, llvm-commits
Differential Revision: http://reviews.llvm.org/D17992
llvm-svn: 263143
Summary:
They correspond to BUFFER_LOAD/STORE_FORMAT_XYZW and will be used by Mesa
to implement the GL_ARB_shader_image_load_store extension.
The intention is that for llvm.amdgcn.buffer.load.format, LLVM will decide
whether one of the _X/_XY/_XYZ opcodes can be used (similar to image sampling
and loads). However, this is not currently implemented.
For llvm.amdgcn.buffer.store, LLVM cannot decide to use one of the "smaller"
opcodes and therefore the intrinsic is overloaded. Currently, only the v4f32
is actually implemented since GLSL also only has a vec4 variant of the store
instructions, although it's conceivable that Mesa will want to be smarter
about this in the future.
BUFFER_LOAD_FORMAT_XYZW is already exposed via llvm.SI.vs.load.input, which
has a legacy name, pretends not to access memory, and does not capture the
full flexibility of the instruction.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17277
llvm-svn: 263140
When trying to replace an add to esp with pops, we need to choose dead
registers to pop into. Registers clobbered by the call and not imp-def'd
by it should be safe. Except that it's not enough to check the register
itself isn't defined, we also need to make sure no overlapping registers
are defined either.
This fixes PR26711.
Differential Revision: http://reviews.llvm.org/D18029
llvm-svn: 263139
Summary:
Peephole optimization that generates a single TBZ/TBNZ instruction
for test and branch sequences like in the example below. This handles
the cases that miss folding of AND into TBZ/TBNZ during ISelLowering of BR_CC
Examples:
and w8, w8, #0x400
cbnz w8, L1
to
tbnz w8, #10, L1
Reviewers: MatzeB, jmolloy, mcrosier, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17942
llvm-svn: 263136
This patch adds Cortex-R8 to Target Parser and TableGen.
It also adds CodeGen tests for the build attributes.
Patch by Pablo Barrio.
Differential Revision: http://reviews.llvm.org/D17925
llvm-svn: 263132
This is avoiding a naming conflict with opt and llc.
While opt and llc don't link to LTO usually, users that are building a
monolithic libLLVM.dylib and linking the tools to it would have a
runtime error because of the duplicate cl::opt registration.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263127
The initial change was insufficiently complete for always getting the semantics
of __builtin_longjmp correct. The builtin is translated into a
`tInt_eh_sjlj_longjmp` DAG node. This node set R7 as clobbered. However, the
code would then follow up with a clobber of R11. I had failed to notice the
imp-def,kill on R7 in the isel. Unfortunately, it seems that it is not possible
to conditionalise the Defs list via an !if. Instead, construct a new parallel
WIN node and prefer that when targeting windows. This ensures that we now both
correctly model the __builtin_longjmp as well as construct the frame in a more
ABI conformant manner.
llvm-svn: 263123
of, and I misdiagnosed for months and months.
Andrea has had a patch for this forever, but I just couldn't see how
it was fixing the root cause of the problem. It didn't make sense to me,
even though the patch was perfectly good and the analysis of the actual
failure event was *fantastic*.
Well, I came back to it today because the patch has sat for *far* too
long and needs attention and decided I wouldn't let it go until I really
understood what was going on. After quite some time in the debugger,
I finally realized that in fact I had just missed an important case with
my previous attempt to fix PR22093 in r225149. Not only do we need to
handle loads that won't be split, but stores-of-loads that we won't
split. We *do* actually have enough logic in the presplitting to form
new slices for split stores.... *unless* we decided not to split them!
I'm so sorry that it took me this long to come to the realization that
this is the issue. It seems so obvious in hind sight (of course).
Anyways, the fix becomes *much* smaller and more focused. The fact that
we're left doing integer smashing is related to the FIXME in my original
commit: fundamentally, we're not aggressive about pre-splitting for
loads and stores to the same alloca. If we want to get aggressive about
this, it'll need both what Andrea had put into the proposed fix, but
also a *lot* more logic to essentially iteratively pre-split the alloca
until we can't do any more. As I said in that commit log, its really
unclear that this is the right call. Instead, the integer blending and
letting targets lower this to narrower stores seems slightly better. But
we definitely shouldn't really go down that path just to fix this bug.
Again, tons of thanks are owed to Andrea and others at Sony for working
on this bug. I really should have seen what was going on here and
re-directed them sooner. =////
llvm-svn: 263121
WoA uses r11 as the FP even though it is a pure thumb-2 environment in contrast
to AAPCS which states r7. This adjusts __builtin_longjmp to not clobber r7 and
to properly restore the frame pointer on execution.
llvm-svn: 263118
We already have the instruction extracted into 'I', just cast that to
a store the way we do for loads. Also, we don't enter the if unless SI
is non-null, so don't test it again for null.
I'm pretty sure the entire test there can be nuked, but this is just the
trivial cleanup.
llvm-svn: 263112
actually finish wiring up the old call graph.
There were bugs in the old call graph that hadn't been caught because it
wasn't being tested. It wasn't being tested because it wasn't in the
pipeline system and we didn't have a printing pass to run in tests. This
fixes all of that.
As for why I'm still keeping the old call graph alive its so that I can
port GlobalsAA to the new pass manager with out forking it to work with
the lazy call graph. That's clearly the right eventual design, but it
seems pragmatic to defer that until its necessary. The old call graph
works just fine for GlobalsAA.
llvm-svn: 263104
This patch reorders the combining of target shuffle masks so that when a unary shuffle takes a binary shuffle as its input but only references one of its inputs it can correctly combine into a unary shuffle mask.
This is starting to encroach on the purpose of resolveTargetShuffleInputs, but I don't want to remove it until we definitely know we won't need it for full binary shuffle combining.
There is a lot more work before we can properly support binary target shuffle masks but this was an easy case to add support for.
Differential Revision: http://reviews.llvm.org/D17858
llvm-svn: 263102
location in the opt tool to live along side the analysis in LLVM's
libraries.
No functionality changed here, but this will allow me to port the
printer to the new pass manager as well.
llvm-svn: 263101
There is another pass by the generic name 'CallGraphPrinter' which is
actually just a call graph printer tucked away inside the opt tool. I'd
like to bring it out and make it follow the same patterns as the rest of
the CallGraph code, but doing so would end up conflicting with the name
of the DOT printing pass. So this makes the DOT printing pass name be
more precise.
No functionality changed here.
llvm-svn: 263100
Operation SCALAR_TO_VECTOR for v64i8 and v32i16 should be lowered if BW feature is "on".
Differential Revision: http://reviews.llvm.org/D17994
llvm-svn: 263097
Summary:
This provides a macro that expands to __builtin_debugtrap() for clang,
and __debugbreak() for MSVC.
It intentionally expands to nothing for compilers that do not support a
similar mechanism that halts the debugger without otherwise crashing the
process.
Differential Revision: http://reviews.llvm.org/D18002
llvm-svn: 263095
This change adds a support for a preserve_most calling convention to the AArch64 backend, similar to how it was done for X86-64.
There is also a subsequent patch on top of this one to add a tail-calls support for this calling convention.
Differential Revision: http://reviews.llvm.org/D18016
llvm-svn: 263092
opt adds Verifier passes in AddOptimizationPasses even if
-disable-verify is on. Fix it so that the extra verification occurs
either when (1) -disable-verifier is off, or (2) -verify-each is on.
Thanks to David Jones for pointing out this behavior!
llvm-svn: 263090
MinVecRegSize is currently hardcoded to 128; this patch adds a cl::opt
to allow changing it. I tried not to change any existing behavior for the default
case.
Differential revision: http://reviews.llvm.org/D13278
llvm-svn: 263089
Summary:
This is intended to be a performance flag, on the same level as clang
cc1 option "--disable-free". LLVM will never initialize it by default,
it will be up to the client creating the LLVMContext to request this
behavior. Clang will do it by default in Release build (just like
--disable-free).
"opt" and "llc" can opt-in using -disable-named-value command line
option.
When performing LTO on llvm-tblgen, the initial merging of IR peaks
at 92MB without this patch, and 86MB after this patch,setNameImpl()
drops from 6.5MB to 0.5MB.
The total link time goes from ~29.5s to ~27.8s.
Compared to a compile-time flag (like the IRBuilder one), it performs
very close. I profiled on SROA and obtain these results:
420ms with IRBuilder that preserve name
372ms with IRBuilder that strip name
375ms with IRBuilder that preserve name, and a runtime flag to strip
Reviewers: chandlerc, dexonsmith, bogner
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17946
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263086
need to be changed for porting to the new pass manager.
Also sink the comment on the ValueTable class back to that class instead
of it dangling on an anonymous namespace.
No functionality changed.
llvm-svn: 263084
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.
There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.
Differential Revision: http://reviews.llvm.org/D17962
llvm-svn: 263082
MemoryDependenceAnalysis had a hard-coded exception to the general aliasing rules for malloc and calloc. The reasoning that applied there is equally valid in BasicAA and clarifies the remaining logic in MDA.
In principal, this can expose slightly more optimization opportunities, but since essentially all of our aliasing aware memory optimization passes go through MDA, this will likely be NFC in practice.
Differential Revision: http://reviews.llvm.org/D15912
llvm-svn: 263075
This patch teaches CGP to duplicate addressing mode computations into cold paths (detected via explicit cold attribute on calls) if required to let addressing mode be safely sunk into the basic block containing each load and store.
In general, duplicating code into cold blocks may result in code growth, but should not effect performance. In this case, it's better to duplicate some code than to put extra pressure on the register allocator by making it keep the address through the entirely of the fast path.
This patch only handles addressing computations, but in principal, we could implement a more general cold cold scheduling heuristic which tries to reduce register pressure in the fast path by duplicating code into the cold path. Getting the profitability of the general case right seemed likely to be challenging, so I stuck to the existing case (addressing computation) we already had.
Differential Revision: http://reviews.llvm.org/D17652
llvm-svn: 263074
This patch teaches LICM's implementation of store promotion to exploit the fact that the memory location being accessed might be provable thread local. The fact it's thread local weakens the requirements for where we can insert stores since no other thread can observe the write. This allows us perform store promotion even in cases where the store is not guaranteed to execute in the loop.
Two key assumption worth drawing out is that this assumes a) no-capture is strong enough to imply no-escape, and b) standard allocation functions like malloc, calloc, and operator new return values which can be assumed not to have previously escaped.
In future work, it would be nice to generalize this so that it works without directly seeing the allocation site. I believe that the nocapture return attribute should be suitable for this purpose, but haven't investigated carefully. It's also likely that we could support unescaped allocas with similar reasoning, but since SROA and Mem2Reg should destroy those, they're less interesting than they first might seem.
Differential Revision: http://reviews.llvm.org/D16783
llvm-svn: 263072
The irony of this patch is that one CPU that is affected is AMD Jaguar, and Jaguar
has a completely double-pumped AVX implementation. But getting the cost model to
reflect that is a much bigger problem. The small goal here is simply to improve on
the lie that !AVX2 == SandyBridge.
Differential Revision: http://reviews.llvm.org/D18000
llvm-svn: 263069
Instead of a variable-blend instruction, form a blend with immediate because those are always cheaper.
Differential Revision: http://reviews.llvm.org/D17899
llvm-svn: 263067
When checking whether an smin is positive, we can move the comparison to one of the inputs if the other is known positive. If the known positive one is the min, then the other can't be negative. If the other is the min, then we compute the min.
Differential Revision: http://reviews.llvm.org/D17873
llvm-svn: 263059
I somehow missed this. The case in GCC (global_alloc) was similar to
the new testcase except it had an array of structs rather than a two
dimensional array.
Fixes RP26885.
llvm-svn: 263058
As part of r251146 InstCombine was extended to call computeKnownBits on
every value in the function to determine whether it happens to be
constant. This increases typical compiletime by 1-3% (5% in irgen+opt
time) in my measurements. On the other hand this case did not trigger
once in the whole llvm-testsuite.
This patch introduces the notion of ExpensiveCombines which are only
enabled for OptLevel > 2. I removed the check in InstructionSimplify as
that is called from various places where the OptLevel is not known but
given the rarity of the situation I think a check in InstCombine is
enough.
Differential Revision: http://reviews.llvm.org/D16835
llvm-svn: 263047
This will allow inline assembler code to utilize these features, but no automatic lowering is provided, except for the previously provided @llvm.trap, which lowers to "ta 5".
The change also separates out the different assembly language syntaxes for V8 and V9 Sparc. Previously, only V9 Sparc assembly syntax was provided.
The change also corrects the selection order of trap disassembly, allowing, e.g. "ta %g0 + 15" to be rendered, more readably, as "ta 15", ignoring the %g0 register. This is per the sparc v8 and v9 manuals.
Check-in includes many extra unit tests to check this works correctly on both V8 and V9 Sparc processors.
Code Reviewed at http://reviews.llvm.org/D17960.
llvm-svn: 263044
Removing the assertion is safe to do because any module level inline
assembly is always emitted first via AsmPrinter::doInitialization().
http://reviews.llvm.org/D16101
rdar://22690666
llvm-svn: 263033
Summary:
The code in SelectionDAG did not handle the case where the
register type and output types were different, but had the same size.
Reviewers: arsenm, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17940
llvm-svn: 263022
Original commit message:
calculate builtin_object_size if argument is a removable pointer
This patch fixes calculating correct value for builtin_object_size function
when pointer is used only in builtin_object_size function call and never
after that.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D17337
Reland the original change with a small modification (first do a null check
and then do the cast) to satisfy ubsan.
llvm-svn: 263011
We changed several functions in LoopAccessAnalysis to use PSE instead of
taking SE and a SCEV predicate as arguments, but didn't update the comments.
This also fixes a comment in ScalarEvolution, where we refered to Preds
when the argument name was A.
llvm-svn: 263009
Supprot DPP syntax as used in SP3 (except several operands syntax).
Added dpp-specific operands in td-files.
Added DPP flag to TSFlags to determine if instruction is dpp in InstPrinter.
Support for VOP2 DPP instructions in td-files.
Some tests for DPP instructions.
ToDo:
- VOP2bInst:
- vcc is considered as operand
- AsmMatcher doesn't apply mnemonic aliases when parsing operands
- v_mac_f32
- v_nop
- disable instructions with 64-bit operands
- change dpp_ctrl assembler representation to conform sp3
Review: http://reviews.llvm.org/D17804
llvm-svn: 263008
s_setpc_b64 has just one 64-bit source which is the address of instruction to jump to.
Differential Revision: http://reviews.llvm.org/D17888
llvm-svn: 263005
It is a transitive dependency, so static build are OK but not build
with individual DSO for each LLVM library.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 262987
This implements a very simple conservative transformation that doesn't
require more than linear code size growth. There's room for much more
optimization in this space.
llvm-svn: 262982
Building on the previous change, this generalizes
ScalarEvolution::getRangeViaFactoring to work with
{Ext(C?A:B)+k0,+,Ext(C?A:B)+k1} where Ext can be a zero extend, sign
extend or truncate operation, and k0 and k1 are constants.
llvm-svn: 262979
This change generalizes ScalarEvolution::getRangeViaFactoring to work
with {Ext(C?A:B),+,Ext(C?A:B)} where Ext can be a zero extend, sign
extend or truncate operation.
llvm-svn: 262978
This is intended to provide a parallel (threaded) ThinLTO scheme
for linker plugin use through the libLTO C API.
The intent of this patch is to provide a first implementation as a
proof-of-concept and allows linker to start supporting ThinLTO by
definiing the libLTO C API. Some part of the libLTO API are left
unimplemented yet. Following patches will add support for these.
The current implementation can link all clang/llvm binaries.
Differential Revision: http://reviews.llvm.org/D17066
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 262977