Summary:
Depends on D30928.
This adds support for coercion of stores and memory instructions that do not require insertion to process.
Another few tests down.
I added the relevant tests from rle.ll
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30929
llvm-svn: 299330
Disable bypassing if one of the operands looks like a hash value. Slow
division often occurs in hashtable implementations and fast division is
never taken there because a hash value is extremely unlikely to have
enough upper bits set to zero.
A value is considered to be hash-like if it is produced by
1) XOR operation
2) Multiplication by a constant wider than the shorter type
3) PHI node with all incoming values being hash-like
Differential Revision: https://reviews.llvm.org/D28200
llvm-svn: 299329
A common way to implement nearbyint is by fiddling with the floating
point environment and calling rint. This is used at least by the BSD
libm and musl. As such, canonicalizing the latter to the former will
create infinite loops for libm and generally pessimize performance, at
least when the generic C versions are used.
This change preserves the rint in the libcall translation and also
handles the domain truncation logic, so that rint with float argument
will be reduced to rintf etc.
llvm-svn: 299247
Summary: Currently the VP metadata was dropped when InstCombine converts a call to direct call. This patch converts the VP metadata to branch_weights so that its hotness is recorded.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31344
llvm-svn: 299228
Summary:
Triggered by commit r298620: "[LV] Vectorize GEPs".
If we encounter a vector GEP with scalar arguments, we splat the scalar
into a vector of appropriate size before we scatter the argument.
Reviewers: arsenm, mehdi_amini, bkramer
Reviewed By: arsenm
Subscribers: bjope, mssimpso, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31416
llvm-svn: 299186
Since there is no sdiv in SCEV, an 'udiv' is a better canonical form than an 'sdiv' as the user of induction variable
Differential Revision: https://reviews.llvm.org/D31488
llvm-svn: 299118
Some of the GEP combines (e.g., descaling) can't handle vector GEPs. We have an
existing check that attempts to bail out if given a vector GEP. However, the
check only tests the GEP's pointer operand. A GEP results in a vector of
pointers if at least one of its operands is vector-typed (e.g., its pointer
operand could be a scalar, but its index could be a vector). We should just
check the type of the GEP itself. This should fix PR32414.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32414
Differential Revision: https://reviews.llvm.org/D31470
llvm-svn: 299017
The vectorizer tries to replace truncations of induction variables with new
induction variables having the smaller type. After r295063, this optimization
was applied to all integer induction variables, including non-primary ones.
When optimizing the truncation of a non-primary induction variable, we still
need to transform the new induction so that it has the correct start value.
This should fix PR32419.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32419
llvm-svn: 298882
Summary:
We are incorrectly folding selects into phi nodes when the incoming value of a phi
node is a constant vector. This optimization is done in `FoldOpIntoPhi` when the
select condition is a phi node with constant incoming values.
Without the fix, we are miscompiling (i.e. incorrectly folding the
select into the phi node) when the vector contains non-zero
elements.
This patch fixes the miscompile and we will correctly fold based on the
select vector operand (see added test cases).
Reviewers: majnemer, sanjoy, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31189
llvm-svn: 298845
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
llvm-svn: 298799
This moves it to the iterator facade utilities giving it full random
access semantics, etc. It can also now be used with standard algorithms
like std::all_of and std::any_of and range adaptors like llvm::reverse.
Also make the semantics of iterating match what every other iterator
uses and forbid decrementing past the begin iterator. This was used as
a hacky way to work around iterator invalidation. However, every
instance trying to do this failed to actually avoid touching invalid
iterators despite the clear documentation that the removed and all
subsequent iterators become invalid including the end iterator. So I've
added a return of the next iterator to removeCase and rewritten the
loops that were doing this to correctly follow the iterator pattern of
either incremneting or removing and assigning fresh values to the
iterator and the end.
In one case we were trying to go backwards to make this cleaner but it
doesn't actually work. I've made that code match the code we use
everywhere else to remove cases as we iterate. This changes the order of
cases in one test output and I moved that test to CHECK-DAG so it
wouldn't care -- the order isn't semantically meaningful anyways.
llvm-svn: 298791
Reason: breaks linking Chromium with LLD + ThinLTO (a pass crashes)
LLVM bug: https://bugs.llvm.org//show_bug.cgi?id=32413
Original change description:
[LV] Vectorize GEPs
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Original Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298735
Summary: Declarations need to be filtered out when counting functions.
Reviewers: eraman
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31336
llvm-svn: 298720
Summary: In DeadArgumentElimination, the call instructions will be replaced. We also need to set the prof weights so that function inlining can find the correct profile.
Reviewers: eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31143
llvm-svn: 298660
Library functions can have specific semantics that affect the behavior of
certain passes. DSE, for instance, gives special treatment to malloc-ed pointers
but not to pointers returned from an equivalently typed (but differently named)
function.
MetaRenamer ought not to alter program semantics, so library functions must
remain untouched.
Reviewers: mehdi_amini, majnemer, chandlerc, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D31304
llvm-svn: 298659
Summary: The current prefix based function layout algorithm only looks at function's entry count, which is not sufficient. A function should be grouped together if its entry count or any call edge count is hot.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31225
llvm-svn: 298656
The new test asserts that scalarized memory operations get memcheck metadata
added even if the loop is only unrolled.
Differential Revision: https://reviews.llvm.org/D30972
llvm-svn: 298641
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.
The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.
Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.
However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.
Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).
Added various tests to ensure that we get identical index files out of
the thin link step.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31027
llvm-svn: 298638
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298620
The code for generating scalar base pointers in vectorizeMemoryInstruction is
not needed. We currently scalarize all GEPs and maintain the scalarized values
in VectorLoopValueMap. The GEP cloning in this unneeded code is the same as
that in scalarizeInstruction. The test cases that changed as a result of this
patch changed because we were able to reuse the scalarized GEP that we
previously generated instead of cloning a new one.
Differential Revision: https://reviews.llvm.org/D30587
llvm-svn: 298615
Summary: ThinLTO will annotate the CFG twice. If the branch weight is set by the first annotation, we should not set the branch weight again in the second annotation because the first annotation is more accurate as there is less optimization that could affect debug info accuracy.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: mehdi_amini, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D31228
llvm-svn: 298602
insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
As noted in the code comment and seen in the test changes, the motivation is that by pulling
constant insertion up, we may be able to constant fold some insertelement instructions.
Differential Revision: https://reviews.llvm.org/D31196
llvm-svn: 298520
Summary: Subtracts can have constants on the left side, but we don't shrink them based on demanded bits. This patch fixes that to match the right hand side.
Reviewers: davide, majnemer, spatel, sanjoy, hfinkel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31119
llvm-svn: 298478
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This adds a parameter to @llvm.objectsize that makes it return
conservative values if it's given null.
This fixes PR23277.
Differential Revision: https://reviews.llvm.org/D28494
llvm-svn: 298430
Summary: Inliner should update the branch_weights annotation to scale it to proper value.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D30767
llvm-svn: 298270