This fixes PR39402. The crash was caused when dereferencing nullptr in
DumpObject and printArchiveChild.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D53690
Patch by Xing GUO
llvm-svn: 345503
Changed the format call to match the surrounding code. Previously it was
printing an unsigned int while the return type being printed was
long unsigned int or wider. This caused problems for big-endian systems
which were discovered on mips64.
Also, the printed address had less characters than it should because the
character count was directly obtained from the number of bytes in the
address.
The tests were adapted to fit this fix and now use longer addresses.
Patch by Milos Stojanovic.
Differential Revision: https://reviews.llvm.org/D53403
llvm-svn: 344818
For some reason, llvm-objdump defaults to -arch=i386 on this system while
the test checks x86_64 output. Explicitly pass -arch=x86_64.
llvm-svn: 341944
When using -g and -dsym, llvm-objdump opens the dsym file and keeps the
MachOObjectFile alive, while the memory buffer that the MachOObjectFile
was based on gets destroyed.
Differential Revision: https://reviews.llvm.org/D51365
llvm-svn: 341209
Summary:
With Mach-O, there is a flag requirement discrepancy between working with
universal binaries and thin binaries. Many flags that don't require the `-macho`
flag (for example `-private-headers` and `-disassemble`) fail to work on
universal binaries unless `-macho` is given. When this happens, the error
message is unhelpful, stating:
The file was not recognized as a valid object file.
Which can lead to confusion.
This change allows generic flags to be used on universal binaries with and
without the `-macho` flag. This means flags that can be used for thin files can
be used consistently with fat files too.
To do this, the universal binary support within `ParseInputMachO()` is extracted
into a new function. This new function is called directly from `DumpInput()`
when the input binary is universal. Additionally the `-arch` flag validation in
`ParseInputMachO()` was extracted to be reused.
Reviewers: compnerd
Reviewed By: compnerd
Subscribers: keith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48702
llvm-svn: 338792
Imagine we have a file with few sections, and one of them is .foo
with index N != 0.
Problem is that when llvm-objdump is given a -section=.foo parameter
it lists .foo as a section at index 0. That makes impossible to write
test cases which needs to find the index of the particular section,
while ignoring dumping of others.
The patch fixes that.
Differential revision: https://reviews.llvm.org/D49372
llvm-svn: 337361
Summary:
Add support for two additional ObjC image info flags: `IS_SIMULATED` and
`HAS_CATEGORY_CLASS_PROPERTIES`.
`IS_SIMULATED` indicates a Mach-O binary built for iOS simulator.
`HAS_CATEGORY_CLASS_PROPERTIES` indicates a Mach-O binary built by a compiler
that supports class properties in categories.
Reviewers: enderby, compnerd
Reviewed By: compnerd
Subscribers: keith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48568
llvm-svn: 336411
Summary:
Add support for two additional ObjC image info flags: `IS_SIMULATED` and
`HAS_CATEGORY_CLASS_PROPERTIES`.
`IS_SIMULATED` indicates a Mach-O binary built for iOS simulator.
`HAS_CATEGORY_CLASS_PROPERTIES` indicates a Mach-O binary built by a compiler
that supports class properties in categories.
Reviewers: enderby, compnerd
Reviewed By: compnerd
Subscribers: keith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48568
llvm-svn: 336399
This test is failing because of the disas part.
For the moment, I will juste remove it. I will add it again tomorrow
with a proper fix.
llvm-svn: 336370
IT instructions are allowed to have the 'AL' predicate, but it must never
result in an 'NV' predicated instruction. Essentially this means that all
branches must be 't' rather than 'e' if the predicate is 'AL'.
This patch adds a diagnostic for this during assembly (error because parsing
hits an assertion if allowed to continue) and an annotation during disassembly.
llvm-svn: 335593
This removes debug locations from ConstantSDNode and ConstantSDFPNode.
When this kind of node is materialized we no longer create a line table
entry which jumps back to the constant's first point of use. This makes
single-stepping behavior smoother, and it matches the model used by IR,
where Constants have no locations. See this thread for more context:
http://lists.llvm.org/pipermail/llvm-dev/2018-June/124164.html
I'd like to handle constant BuildVectorSDNodes and to try to eliminate
passing SDLocs to SelectionDAG::getConstant*() in follow-up commits.
Differential Revision: https://reviews.llvm.org/D48468
llvm-svn: 335497
Summary: The final -wasm component has been the default for some time now.
Subscribers: jfb, dschuff, jgravelle-google, eraman, aheejin, JDevlieghere, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D46342
llvm-svn: 332007
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary: Also test for symbols information in test/MC/WebAssembly/debug-info.ll.
Subscribers: jfb, dschuff, jgravelle-google, aheejin, sunfish, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46160
llvm-svn: 331005
When disassembling with -D, skip virtual sections by printing "..." for
each symbol.
This patch also implements `MachOObjectFile::isSectionVirtual`.
Test case comes from:
```
.zerofill __DATA,__common,_data64unsigned,472,3
```
Differential Revision: https://reviews.llvm.org/D45824
llvm-svn: 330342
Summary:
This is a canonical way to teach objdump to print the target
symbols for branches when disassembling AArch64 code.
Reviewers: evandro, t.p.northover, espindola
Reviewed By: t.p.northover
Differential Revision: https://reviews.llvm.org/D44851
llvm-svn: 328638
term sections from .o files to look to see if the pointers have a relocation
entry and if so print the symbol name from the relocation entry. If not fall
back to the existing code and use the pointer value to look up that value
in the symbol table.
rdar://38337506
llvm-svn: 328037
Summary:
Add a new option -df to llvm-objdump that takes function names
as arguments and instructs the disassembler to only dump those function
contents. Based on code originally written by Bill Nell.
Reviewers: espindola, JDevlieghere
Differential Revision: https://reviews.llvm.org/D44224
llvm-svn: 327164
This is required in order to enable relocs to be validated
as they are read in.
Also update tests with new section ordering.
Differential Revision: https://reviews.llvm.org/D43940
llvm-svn: 326694
This is combination of two patches by Nicholas Wilson:
1. https://reviews.llvm.org/D41954
2. https://reviews.llvm.org/D42495
Along with a few local modifications:
- One change I made was to add the UNDEFINED bit to the binary format
to avoid the extra byte used when writing data symbols. Although this
bit is redundant for other symbols types (i.e. undefined can be
implied if a function or global is a wasm import)
- I prefer to be explicit and consistent and not have derived flags.
- Some field renaming.
- Some reverting of unrelated minor changes.
- No test output differences.
Differential Revision: https://reviews.llvm.org/D43147
llvm-svn: 325860
Peviously we were reporting undefined symbol as being defined
by the IMPORT sections.
This change reports undefined symbols in the same that other
formats do, and also removes the need to store the section
with each symbol (since it can be derived from the symbol
type).
Differential Revision: https://reviews.llvm.org/D43101
llvm-svn: 324770
Get rid of DEBUG_FUNCTION_NAME symbols. When we actually debug
data, maybe we'll want somewhere to put it... but having a symbol
that just stores the name of another symbol seems odd.
It means you have multiple Symbols with the same name, one
containing the actual function and another containing the name!
Store the names in a vector on the WasmObjectFile when reading
them in. Also stash them on the WasmFunctions themselves.
The names are //not// "symbol names" or aliases or anything,
they're just the name that a debugger should show against the
function body itself. NB. The WasmObjectFile stores them so that
they can be exported in the YAML losslessly, and hence the tests
can be precise.
Enforce that the CODE section has been read in before reading
the "names" section. Requires minor adjustment to some tests.
Patch by Nicholas Wilson!
Differential Revision: https://reviews.llvm.org/D42075
llvm-svn: 322741
Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
All tests are passing for llvm, clang, and lld. llvm-objdump builds without
compiler warnings.
rdar://35778019
Reviewers: enderby
Reviewed By: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41199
llvm-svn: 320832
Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
rdar://35778019
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41061
llvm-svn: 320532
Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
rdar://35778019
Reviewers: enderby
Reviewed By: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40867
llvm-svn: 320166
This patch lets the llvm tools handle the new HVX target features that
are added by frontend (clang). The target-features are of the form
"hvx-length64b" for 64 Byte HVX mode, "hvx-length128b" for 128 Byte mode HVX.
"hvx-double" is an alias to "hvx-length128b" and is soon will be deprecated.
The hvx version target feature is upgated form "+hvx" to "+hvxv{version_number}.
Eg: "+hvxv62"
For the correct HVX code generation, the user must use the following
target features.
For 64B mode: "+hvxv62" "+hvx-length64b"
For 128B mode: "+hvxv62" "+hvx-length128b"
Clang picks a default length if none is specified. If for some reason,
no hvx-length is specified to llvm, the compilation will bail out.
There is a corresponding clang patch.
Differential Revision: https://reviews.llvm.org/D38851
llvm-svn: 316101
Summary:
This leak doesn't reproduce locally on macOS 10.12, but is causing
buildbot failures. Disable leak checking until it can be fixed.
Reviewers: sqlbyme, qcolombet, enderby, bruno
Reviewed By: bruno
Subscribers: bruno, llvm-commits
Differential Revision: https://reviews.llvm.org/D38699
llvm-svn: 315337
in the second slice of a Mach-O universal file.
The code in llvm-objdump in in DisassembleMachO() was getting the default
CPU then incorrectly setting into the global variable used for the -mcpu option
if that was not set. This caused a second call to DisassembleMachO() to use
the wrong default CPU when disassembling the next slice in a Mach-O universal
file. And would result in bad disassembly and an error message about an
recognized processor for the target:
% llvm-objdump -d -m -arch all fat.macho-armv7s-arm64
fat.macho-armv7s-arm64 (architecture armv7s):
(__TEXT,__text) section
armv7:
0: 60 47 bx r12
fat.macho-armv7s-arm64 (architecture arm64):
'cortex-a7' is not a recognized processor for this target (ignoring processor)
'cortex-a7' is not a recognized processor for this target (ignoring processor)
(__TEXT,__text) section
___multc3:
0: .long 0x1e620810
rdar://34439149
llvm-svn: 313921
This is stepping stone towards honoring -fdata-sections
and letting the assembler decide how many wasm data
segments to create.
Differential Revision: https://reviews.llvm.org/D37834
llvm-svn: 313313
This change only treats imported and exports functions and globals
as symbol table entries the object has a "linking" section (i.e. it is
relocatable object file).
In this case all globals must be of type I32 and initialized with
i32.const. This was previously being assumed but not checked for and
was causing a failure on big endian machines due to using the wrong
value of then union.
See: https://bugs.llvm.org/show_bug.cgi?id=34487
Differential Revision: https://reviews.llvm.org/D37497
llvm-svn: 312674
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
lld needs a matching change for this will be my next commit.
Expect it to fail build until that matching commit is picked up by the bots.
Like the changes in r296527 for dyld bind entires and the changes in
r298883 for lazy bind, weak bind and rebase entries the export
entries are the last of the dyld compact info to have error handling added.
This follows the model of iterators that can fail that Lang Hanes
designed when fixing the problem for bad archives r275316 (or r275361).
So that iterating through the exports now terminates if there is an error
and returns an llvm::Error with an error message in all cases for malformed
input.
This change provides the plumbing for the error handling, all the needed
testing of error conditions and test cases for all of the unique error messages.
llvm-svn: 308690
Previously such relocations fell into the last case for local
symbols, using the relocation addend as symbol index, leading to
a crash.
Differential Revision: https://reviews.llvm.org/D35239
llvm-svn: 307927
All other code in MachODump.cpp uses the same comparison,
((r_length & 0x1) == 1), for distinguishing between the two,
while the code in llvm-objdump.cpp seemed to be incorrect.
Differential Revision: https://reviews.llvm.org/D35240
llvm-svn: 307882
For each checked-in wasm file, make sure the there is
corresponding .ll file that can be used to regenerate it
if needed.
Add test/Object/Inputs/trivial-object-test.wasm to match other
formats and add some new wasm tests in test/Object.
Differential Revision: https://reviews.llvm.org/D35213
llvm-svn: 307585
in the base address.
Without this Mach-O files, like 64-bit executables, don’t have the correct
addresses printed for their exports. As the default is to link at address
0x100000000 not zero.
llvm-svn: 305744
This may trigger a segfault in llvm-objdump when the line number stored
in debug infromation points beyond the end of file; lines in LineBuffer
are stored in std::vector which is allocated in chunks, so even if the
debug info points beyond the end of the file, this doesn't necessarily
trigger the segfault unless the line number points beyond the allocated
space.
Differential Revision: https://reviews.llvm.org/D32466
llvm-svn: 301347
BIND_OPCODE_DONE/REBASE_OPCODE_DONE may appear at the end of the opcode array,
but they are not required to. The linker only adds them as padding to align the
opcodes to pointer size.
This fixes rdar://problem/31285560.
llvm-svn: 299104
Mostly this change adds support converting to and from
YAML which will allow us to write more test cases for
the WebAssembly MC and lld ports.
Better support for objdump, readelf, and nm will be in
followup CLs.
I had to update the two wasm test binaries because they
used the old style 'name' section which is no longer
supported.
Differential Revision: https://reviews.llvm.org/D31099
Patch by Sam Clegg
llvm-svn: 299101
rebase entry errors and test cases for each of the error checks.
Also verified with Nick Kledzik that a BIND_OPCODE_SET_ADDEND_SLEB
opcode is legal in a lazy bind table, so code that had that as an error
check was removed.
With MachORebaseEntry and MachOBindEntry classes now returning
an llvm::Error in all cases for malformed input the variables Malformed
and logic to set use them is no longer needed and has been removed
from those classes.
Also in a few places, removed the redundant Done assignment to true
when also calling moveToEnd() as it does that assignment.
This only leaves the dyld compact export entries left to have
error handling yet to be added for the dyld compact info.
llvm-svn: 298883
and test cases for each of the error checks.
To do this more plumbing was needed so that the segment indexes and
segment offsets can be checked. Basically what was done was the SegInfo
from llvm-objdump’s MachODump.cpp was moved into libObject for Mach-O
objects as BindRebaseSegInfo and it is only created when an iterator for
bind or rebase entries are created.
This commit really only adds the error checking and test cases for the
bind table entires and the checking for the lazy bind and weak bind entries
are still to be fully done as well as the rebase entires. Though some of
the plumbing for those are added with this commit. Those other error
checks and test cases will be added in follow on commits.
Note, the two llvm_unreachable() calls should now actually be unreachable
with the error checks in place and would take a logic bug in the error
checking code to be reached if the segment indexes and segment
offsets are used from a checked bind entry. Comments have been added
to the methods that require the arguments to have been checked
prior to calling.
llvm-svn: 298292
other tables. Providing a helpful error message to what the error is and
where the error occurred based on which opcode it was associated with.
There have been handful of bug fixes dealing with bad bind info in
object files, r294021 and r249845, which only put a band aid on the
problem after a bad bind table was created after unpacking from
its compact info. In these cases a bind table should have never been
created and an error should have simply been generated.
This change puts in place the plumbing to allow checking and returning
of an error when the compact info is unpacked. This follows the model
of iterators that can fail that Lang Hanes designed when fixing the problem
for bad archives r275316 (or r275361).
This change uses one of the existing test cases that now causes an
error instead of printing <<bad library ordinal>> after a bad bind table
is created. The error uses the offset into the opcode table as shown with
the macOS dyldinfo(1) tool to indicate where the error is and which
opcode and which parameter is in error.
For example the exiting test case has this lazy binding opcode table:
% dyldinfo -opcodes test/tools/llvm-objdump/Inputs/bad-ordinal.macho-x86_64
…
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000010)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
In the test case the binary only has one library so setting the library
ordinal to the value of 2 in the BIND_OPCODE_SET_DYLIB_ORDINAL_IMM
opcode at 0x0002 above is an error. This now produces this error message:
% llvm-objdump -lazy-bind bad-ordinal.macho-x86_64
…
llvm-objdump: 'bad-ordinal.macho-x86_64': truncated or malformed object (for BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB bad library ordinal: 2 (max 1) for opcode at: 0x2)
This change provides the plumbing for the error handling and one example
of an error message. Other error checks and test cases will be added in follow
on commits.
llvm-svn: 296527
in this case for CPU_SUBTYPE_ARM64_ALL.
For this cpusubtype it should default to a cyclone CPU
to give proper disassembly without a -mcpu= flag.
rdar://27767188
llvm-svn: 294771
Disassembly currently begins from addresses obtained from the objects
symbol table. For ELF, add the dynamic symbols to the list if no
static symbols are available so that we can more successfully
disassemble stripped binaries.
Differential Revision: https://reviews.llvm.org/D29632
llvm-svn: 294430
which caused it to not disassemble the bytes a the start of the section if
the section had symbols and the first symbol was not at the start of the
section.
rdar://30143243
llvm-svn: 294212
without symbols that makes calls through a symbol stub which were not
correctly being annotated with “## symbol stub for: _foo”.
Just adds the same parameters for getting the annotations from
DisAsm->getInstruction() and passing them to IP->printInst() from the
code above when boolean variable symbolTableWorked was true.
rdar://29791952
llvm-svn: 293662
To better match the old darwin otool(1) behavior, when llvm-obdump(1) is used
with the -macho option and the input file is not an object file simply print
the file name and this message:
foo: is not an object file
and continue on to process other input files. Also in this case don’t exit
non-zero. This should help in some OSS projects' with autoconf scripts
that are expecting the old darwin otool(1) behavior.
rdar://26828015
llvm-svn: 293547
for CPU_SUBTYPE_ARM_V7S and CPU_SUBTYPE_ARM_V7K.
For these two cpusubtypes they should default to a cortex-a7 CPU
to give proper disassembly without a -mcpu= flag.
rdar://27431703
llvm-svn: 292993
in llvm-objdump for Mach-O files add the printing of the
x86_thread_state32_t in the same format as
otool-classic(1) on darwin.
To do this the 32-bit x86 general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://30110111
llvm-svn: 292829
Summary:
Add a new load command LC_BUILD_VERSION. It is a generic version of
LC_*_VERSION_MIN load_command used on Apple platforms. Instead of having
a seperate load command for each platform, LC_BUILD_VERSION is recording
platform info as an enum. It also records SDK version, min_os, and tools
that used to build the binary.
rdar://problem/29781291
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29044
llvm-svn: 292824
It describes a region of arbitrary data included in a Mach-O file.
Its initial use is to record extra data in MH_CORE files.
rdar://30001545
rdar://30001731
llvm-svn: 292500
An ELFObjectFile can now create SubtargetFeatures from the available
ARM build attributes, in a similar manner to MIPS. I've moved the
MIPS code into its own function and the ARM handler also has a
separate function.
Differential Revision: https://reviews.llvm.org/D28291
llvm-svn: 292403
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
llvm-svn: 292366
Summary:
Tests under tools/llvm-objdump should not use inputs from Object. Copied the
required inputs and aligned the new tests to be more consistent with the existing
tests in this respect.
Reviewers: ioeric
Reviewed By: ioeric
Subscribers: davide, djasper, cfe-commits
Differential Revision: https://reviews.llvm.org/D28799
llvm-svn: 292222
Summary:
Revert [ARM] Fix ubig32_t read in ARMAttributeParser
Now using support functions to read data instead of trying to
perform casts.
===========================================================
Revert [ARM] Enable objdump to construct triple for ARM
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Subscribers: llvm-commits, samparker, aemerson, mgorny
Differential Revision: https://reviews.llvm.org/D28683
llvm-svn: 291911
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Differential Revision: https://reviews.llvm.org/D28281
llvm-svn: 291898
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
The Mach-O command line flag like "-arch armv7m" does not match the
arch name part of its llvm Triple which is "thumbv7m-apple-darwin”.
I think the best way to fix this is to have
llvm::object::MachOObjectFile::getArchTriple() optionally return the
name of the Mach-O arch flag that would be used with -arch that
matches the CPUType and CPUSubType. Then change
llvm::object::MachOUniversalBinary::ObjectForArch::getArchTypeName()
to use that and change it to getArchFlagName() as the type name is
really part of the Triple and the -arch flag name is a Mach-O thing
for a specific Triple with a specific Mcpu value.
rdar://29663637
llvm-svn: 290001
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This is the first part of an effort to add wasm binary
support across all llvm tools.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D26172
llvm-svn: 288251
In some cases the leading headers of the file name, archive member and
architecture slice name in the output of lvm-objdump is not wanted so the
tool’s output can be directly used by scripts. This matches the -X option
of the Apple otool(1) program.
rdar://28491674
llvm-svn: 288199
No real functional change with this commit.
The problem with report_fatal_error() is it does not include the tool name
and the file name the for which the error message was generated.
Uses of report_fatal_error() were change to report_error() or error()
to get a better error and to make the code smaller and cleaner.
Also changed things like error(errorToErrorCode(SOrErr.takeError())) to
use report_error() with a file name and the llvm::Error (as well as the
ArchitectureName if available) so the error message is printed.
llvm-svn: 287163
To get a good error message for all files that could contain Mach-O
files the code in llvm-objdump needs to use the archive member name
and name of the architecture of a slice of a universal file in those cases
where the error come from a Mach-O file in an archive or a universal file.
Most of this is fixed by moving the call to checkSymbolTable() into
ProcessMachO() and calling it when the operation needs the symbol
table. And then calling the form of report_error() that has the
ArchiveName and ArchitectureName arguments. One other place
needed to call this form of report_error() also with these arguments.
Also changed the code in MachODump.cpp to not use report_fatal_error()
and use report_error() instead to make the code smaller and cleaner. All
cases of this are for errors with the symbol table which should now never
be tripped since checkSymbolTable() should be called first to get a good
error message in these cases.
llvm-svn: 287050
The philosophy of the error checking in libObject for Mach-O files
is that the constructor will check the load commands so for their
tables the offsets and sizes are properly contained in the file.
But there is no checking of the entries of any of the tables.
For the contents of the tables themselves the methods accessing
the contents of the entries return errors as needed. In some
cases this however makes it difficult or cumbersome to produce
a good error message which would include the tool name, file name,
archive member, and name of the architecture of a slice of a universal file
the error occurred in.
So idea is that there will be a method to check a table which can
be called up front before using it allowing a good error message
to be produced before a table is used. And if only verification of
the Mach-O file and its tables are wanted a new possible method
checkAllTables() could be added to call all of the methods to
check all the tables at some time when such methods exist.
The checkSymbolTable() is the first of such methods to check
one of the Mach-O file tables. This method initially will used in
llvm-objdump’s DisassembleMachO() routine before it gets the
section and symbol information. As if there are problems with
the symbol table currently the error is first encountered by the
bool operator() in the SymbolSorter() struct which passed to
std::sort(). In this case there is no context as to the file name
the symbol which results a poor error message:
LLVM ERROR: truncated or malformed object (bad string index: 22 for symbol at index 1)
with the added call to the checkSymbolTable() method the
error message includes the tool name and file name:
llvm-objdump: 'macho-invalid-symbol-strx': truncated or malformed object (bad string table index: 22 past the end of string table, for symbol at index 1)
llvm-svn: 286887
in llvm-objdump for Mach-O files add the printing of the
ARM_THREAD_STATE64 in the same format as
otool-classic(1) on darwin.
To do this the 64-bit ARM general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://28985800
llvm-svn: 285967
the offsets and sizes of an element of the Mach-O file overlaps with
another element in the Mach-O file.
Some other tests for malformed Mach-O files now run into these
checks so their tests were also adjusted.
llvm-svn: 285860
Most of the version of report_error were quoting the filename and
printing a colon between the file name and the error message, but this
one wasn't doing either of those. Fix the output to be more
consistent.
llvm-svn: 285252
the ARM_THREAD_STATE in the same format as
otool-classic(1) on darwin.
Also remove an extra space in printing the initprot to make
the output match otool-classic(1) on darwin.
rdar://28851457
llvm-svn: 284852
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
This adds a copy of the demangler in libcxxabi.
The code also has no dependencies on anything else in LLVM. To enforce
that I added it as another library. That way a BUILD_SHARED_LIBS will
fail if anyone adds an use of StringRef for example.
The no llvm dependency combined with the fact that this has to build
on linux, OS X and Windows required a few changes to the code. In
particular:
No constexpr.
No alignas
On OS X at least this library has only one global symbol:
__ZN4llvm16itanium_demangleEPKcPcPmPi
My current plan is:
Commit something like this
Change lld to use it
Change lldb to use it as the fallback
Add a few #ifdefs so that exactly the same file can be used in
libcxxabi to export abi::__cxa_demangle.
Once the fast demangler in lldb can handle any names this
implementation can be replaced with it and we will have the one true
demangler.
llvm-svn: 280732
This adds behaviour similar to binutils' objdump which can show symbols in an
import library. Differences from that stem around the fact that we do not
create section symbols nor the all import import descriptor symbol reference.
However, this does mean that the tool can serve as a possible replacement for
the existing tool.
llvm-svn: 279088
This contains the two missing checks for LC_SEGMENT load command fields.
And checks for the Mach-O sections fields that would make them invalid.
With the new checks, some of the existing malformed file checks now trips one
of these instead of the issue it was having before so those tests were adjusted.
llvm-svn: 278557
This reverts commit the revert commit r277627. The build errors
mentioned in r277627 were likely caused by an unclean build directory.
Sorry for the noise.
llvm-svn: 277630
This reverts commit r277540. It breaks the build with:
../lib/Object/Archive.cpp:264:41: error: return type of out-of-line definition of 'llvm::object::ArchiveMemberHeader::getUID' differs from that in the declaration
Expected<unsigned> ArchiveMemberHeader::getUID() const {
~~~~~~~~~~~~~~~~~~ ^
include/llvm/Object/Archive.h:53:12: note: previous declaration is here
unsigned getUID() const;
~~~~~~~~ ^
llvm-svn: 277627
in r277177 and added back this test which was deleted in r277196 while
I tracked down these problems.
Changed from constructing Twine's to std::string's as Twine's don't work
across statements. Also removed a few unneeded Twine() constructions.
Fix the write_escaped() calls to not pass the unintended second argument
fixing the warning on the ld-x86_64-win7 bot.
llvm-svn: 277223
As mentioned in commit log for r276686 this next step is adding a new
method in the ArchiveMemberHeader class to get the full name that
does proper error checking, and can be use for error messages.
To do this the name of ArchiveMemberHeader::getName() is changed to
ArchiveMemberHeader::getRawName() to be consistent with
Archive::Child::getRawName(). Then the “new” method is the addition
of a new implementation of ArchiveMemberHeader::getName() which gets
the full name and provides proper error checking. Which is mostly a rewrite
of what was Archive::Child::getName() and cleaning up incorrect uses of
llvm_unreachable() in the code which were actually just cases of errors
in the input Archives.
Then Archive::Child::getName() is changed to return Expected<> and use
the new implementation of ArchiveMemberHeader::getName() .
Also needed to change Archive::getMemoryBufferRef() with these
changes to return Expected<> as well to propagate Errors up.
As well as changing Archive::isThinMember() to return Expected<> .
llvm-svn: 277177
I consulted with Lang Hames on this work, and the goal was to add a bit
of "where" in the archive the error occurred along with what the error was.
So this step changes ArchiveMemberHeader into a class with a pointer
to the archive header and the parent archive. Which allows the methods
in the ArchiveMemberHeader to determine which member the header is
for to include that information in the error message.
For this first step the "where" is just the offset to the member in the
archive. The next step will be a new method on ArchiveMemberHeader
to get the full name, if possible, to be use in the error message. Which
will now be possible as ArchiveMemberHeader contains a pointer to
the Archive with its string table and its size, etc. so the full name can
be determined from the header if it is valid.
Also this change adds the missing checks the archive header is actually
contained in the buffer and is not truncated, as well as if the terminating
characters are correct in the header.
And changes one error message in Archive::Child::getNext() where the
name or offset to member is now added.
llvm-svn: 276686
This step builds on Lang Hames work to change Archive::child_iterator
for better interoperation with Error/Expected. Building on that it is now
possible to return an error message when the size field of an archive
contains non-decimal characters.
llvm-svn: 276025
We don't need to print any of the special __mh_*_header symbols when
disassembling. Since they point at the beginning of the segment (not where the
actual code is) they're pretty misleading.
Should also fix lld bots.
llvm-svn: 275498
We were quite happy to read past the end of the valid section data when
disassembling. Instead we entirely skip stub dylibs, and tell the user what's
happened if their section only has partial data.
llvm-svn: 275487
Summary:
Our YAML library's handling of tags isn't perfect, but it is good enough to get rid of the need for the --format argument to yaml2obj. This patch does exactly that.
Instead of requiring --format, it infers the format based on the tags found in the object file. The supported tags are:
!ELF
!COFF
!mach-o
!fat-mach-o
I have a corresponding patch that is quite large that fixes up all the in-tree test cases.
Reviewers: rafael, Bigcheese, compnerd, silvas
Subscribers: compnerd, llvm-commits
Differential Revision: http://reviews.llvm.org/D21711
llvm-svn: 273915
with the -macho and -universal-headers flags.
Just a follow on to r273207, I missed updating the printing of the fat magic
number when the universal file is a 64-bit universal file.
rdar://26899493
llvm-svn: 273324
It was printing out nothing in this case.
llvm-objdump tries to disassemble sections a symbol at a time. In the case of a
fully stripped Mach-O executable the only symbol remaining in the (__TEXT,__text)
section is the special linker defined symbol __mh_execute_header . This
symbol is special in that while it is N_SECT symbol in the (__TEXT,__text)
its address is before the start of the (__TEXT,__text). It’s address is the
start of the __TEXT segment which is where the mach header is statically
linked. So the code in DisassembleMachO() needs to deal with this case specially.
rdar://26778273
llvm-svn: 272837
to llvm-objdump. This section is created with -fembed-bitcode option.
This requires the use of libxar and the Cmake and lit support were crafted by
Chris Bieneman!
rdar://26202242
llvm-svn: 270491
Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.
Implementation contains following rules:
- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
(for negative values 'formatImm' macro prints the value as i.e -0x01
which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
of -print-imm-hex
Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>
Differential Revision: http://reviews.llvm.org/D16929
llvm-svn: 269446
Two problems, 1) for the last 4 bytes it would print them as separate bytes not a word
and 2) it would print the same last byte for those bytes less than a word.
rdar://25938224
llvm-svn: 267819
This was crashing llvm-objdump with -macho -objc-meta-data when trying dump a non-existent section.
So the test binary is simply created from an empty .s file compiled with: clang -arch armv7 empty.s -c
llvm-svn: 267782
Before we printed a warning to stderr and left the actual output stream in a
mess. This tries to print a .long or .short representation of what we saw (as
if there was a data-in-code directive).
This isn't guaranteed to restore synchronization in Thumb-mode (if the invalid
instruction was supposed to be 32-bits, we may be off-by-16 for the rest of the
function). But there's no certain way to deal with that, and it's invalid code
anyway (if the data really wasn't an instruction, the user can add proper
.data_in_code directives if they care)
llvm-svn: 267250
Only one consumer (llvm-objdump) actually cared about the fact that there were
two triples. Others were actively working around the fact that the Triple
returned by getArch might have been invalid. As for llvm-objdump, it needs to
be acutely aware of both Triples anyway, so being generic in the exposed API is
no benefit.
Also rename the version of getArch returning a Triple. Users were having to
pass an unwanted nullptr to disambiguate the two, which was nasty.
The only functional change here is that armv7m and armv7em object files no
longer crash llvm-objdump.
llvm-svn: 267249
Produce the first specific error message for a malformed Mach-O file describing
the problem instead of the generic message for object_error::parse_failed of
"Invalid data was encountered while parsing the file”. Many more good error
messages will follow after this first one.
This is built on Lang Hames’ great work of adding the ’Error' class for
structured error handling and threading Error through MachOObjectFile
construction. And making createMachOObjectFile return Expected<...> .
So to to get the error to the llvm-obdump tool, I changed the stack of
these methods to also return Expected<...> :
object::ObjectFile::createObjectFile()
object::SymbolicFile::createSymbolicFile()
object::createBinary()
Then finally in ParseInputMachO() in MachODump.cpp the error can
be reported and the specific error message can be printed in llvm-objdump
and can be seen in the existing test case for the existing malformed binary
but with the updated error message.
Converting these interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. To contain the changes for now use of
errorToErrorCode() and errorOrToExpected() are used where the callers
are yet to be converted.
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(ObjOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there is one fix also needed to lld/COFF/InputFiles.cpp that goes along
with this that I will commit right after this. So expect lld not to built
after this commit and before the next one.
llvm-svn: 265606
In executable and shared object ELF files, relocations in the file contain the final virtual address rather than section offset so this is adjusted to display section offset.
Differential revision: http://reviews.llvm.org/D15965
llvm-svn: 263971
It might be hard to recognize a hexadecimal number without '0x' prefix.
Besides that '0x' prefix corresponds to GNU objdump behaviour.
Differential Revision: http://reviews.llvm.org/D18207
llvm-svn: 263705
The PE TLS directory contains information about where the TLS data
resides in the image, what functions should be executed when threads are
created, etc.
llvm-svn: 263537
CIE augmentation data might contain non-printable characters.
The patch prints the data as a list of hex bytes.
Differential Revision: http://reviews.llvm.org/D17759
llvm-svn: 262361
MCJIT emits zero-length CIE at the end of the _eh_frame section. This change
ensures that parser inside DebugInfo will not crash and correctly record such cases.
We are now recording DW_EH_PE_omit as a default value for FDE and LSDA encodings.
Also Offset != EndAugmentationOffset assertion check will only happen if augmentation
string had 'z' letter in it.
Differential Revision: http://reviews.llvm.org/D16588
llvm-svn: 258931
to only print the first private header.
Which for Mach-O files only prints the Mach header and not the subsequent load
commands. Which is used by scripts to match what the darwin otool(1) with the
-h flag does without the -l flag.
For non-Mach-O files it has the same functionality as -private-headers (with
the trailing ’s’).
rdar://24158331
llvm-svn: 257548
LLVM MC has single methods which can handle the output of EH frame and DWARF CIE's and FDE's.
This code improves DWARFDebugFrame::parse to do the same for parsing.
This also allows llvm-objdump to support the --dwarf=frames option which objdump supports. This
option dumps the .eh_frame section using the new code in DWARFDebugFrame::parse.
http://reviews.llvm.org/D15535
Reviewed by Rafael Espindola.
llvm-svn: 256008
This code adds some simple decoding of the FDE's in an eh_frame.
There's still more to be done in terms of error handling and verification.
Also, we need to be able to decode the CFI's.
llvm-svn: 255550
This is the start of work to dump the contents of the eh_frame section.
It currently emits CIE entries. FDE entries will come later.
It also needs improved error checking which will follow soon.
http://reviews.llvm.org/D15502
Reviewed by Kevin Enderby and Lang Hames.
llvm-svn: 255546
Most linked executables do not have a symbol table in COFF.
However, it is pretty typical to have some export entries. Use those
entries to inform the disassembler about potential function definitions
and call targets.
llvm-svn: 253429
In `MachOObjectFile::getSymbolType` we currently always return `SymbolRef::ST_Function` for symbols from any section. In order for llvm-symbolizer to correctly symbolize Mach-O globals, symbols from data and BSS sections should return `SymbolRef::ST_Data`.
Differential Revision: http://reviews.llvm.org/D14576
llvm-svn: 252867
The needed lld matching changes to be submitted immediately next,
but this revision will cause lld failures with this alone which is expected.
This removes the eating of the error in Archive::Child::getSize() when the characters
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
These changes will require corresponding changes to the lld project. That will be
committed immediately after this change. But this revision will cause lld failures
with this alone which is expected.
llvm-svn: 252192
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
Also corrected the code where the size gets us to the “at the end of the archive”
which is OK but past the end of the archive will return object_error::parse_failed now.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
llvm-svn: 250906
ArchiveMemberHeader, suggestion by Rafael Espíndola.
Also The clang-x86-win2008-selfhost bot still does not like the
malformed-machos 00000031.a test, so removing it for now. All
the other bots are fine with it however.
llvm-svn: 250222
flag as it was a Mach-O universal file.
The default as to which architecture slice that is dumped without an -arch flag
depends on the host architecture and the contents of the universal file. The
malformed archive 00000031.a file has both an x86_64 and i386 slice. So for
for x86_64 hosts only that slice is dumped, for non-x86_64 hosts, which is many
of the bots both slices are dumped.
The test is intended to only check that the malformation of the x86_64 which
has a non-decimal characters in the size field of the archive header so it no
longer crashes.
The problem turned out that the i388 slice of the malformed archive had a
different malformation which was causing the non-x86_64 bots to get this error:
llvm-objdump -macho -disassemble -arch i386 00000031.a
Archive : .00000031.a
00000031.a(c_start.o):
LLVM ERROR: Symbol name entry points before beginning or past end of file.
and causing the test as it was written to fail. So by adding ‘-arch x86_64’ it
should correct the test and the malformation on the i388 slice will not be
dumped.
Also the removal of the malformed-machos mem-crup-0261.macho was not causing
the issue so that is put back in.
Sorry for the churn on these tests, Kev
llvm-svn: 250184