We don't handle exceptions yet, so we treat them as sinks. ExprEngine
hardcodes messages that are known to raise Objective-C exceptions like -raise,
but it was only checking for +raise:format: and +raise:format:arguments: on
NSException itself, not subclasses.
<rdar://problem/11724201>
llvm-svn: 159010
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
The default global placement new just returns the pointer it is given.
Note that other custom 'new' implementations with placement args are not
guaranteed to do this.
In addition, we need to invalidate placement args, since they may be updated by
the allocator function. (Also, right now we don't properly handle the
constructor inside a CXXNewExpr, so we need to invalidate the placement args
just so that callers know something changed!)
This invalidation is not perfect because CallOrObjCMessage doesn't support
CXXNewExpr, and all of our invalidation callbacks expect that if there's no
CallOrObjCMessage, the invalidation is happening manually (e.g. by a direct
assignment) and shouldn't affect checker-specific metadata (like malloc state);
hence the malloc test case in new-fail.cpp. But region values are now
properly invalidated, at least.
The long-term solution to this problem is to rework CallOrObjCMessage into
something more general, rather than the morass of branches it is today.
<rdar://problem/11679031>
llvm-svn: 158784
This happens in C++ mode right at the declaration of a struct VLA;
MallocChecker sees a bind and tries to get see if it's an escaping bind.
It's likely that our handling of this is still incomplete, but it fixes a
crash on valid without disturbing anything else for now.
llvm-svn: 158587
This does not actually give us the right behavior for reinterpret_cast
of references. Reverting so I can think about it some more.
This reverts commit 50a75a6e26a49011150067adac556ef978639fe6.
llvm-svn: 158341
These casts only appear in very well-defined circumstances, in which the
target of a reinterpret_cast or a function formal parameter is an lvalue
reference. According to the C++ standard, the following are equivalent:
reinterpret_cast<T&>( x)
*reinterpret_cast<T*>(&x)
[expr.reinterpret.cast]p11
llvm-svn: 158338
While collections containing nil elements can still be iterated over in an
Objective-C for-in loop, the most common Cocoa collections -- NSArray,
NSDictionary, and NSSet -- cannot contain nil elements. This checker adds
that assumption to the analyzer state.
This was the cause of some minor false positives concerning CFRelease calls
on objects in an NSArray.
llvm-svn: 158319
CmpRuns.py can be used to compare issues from different analyzer runs.
Since it uses the issue line number to unique 2 issues, adding a new
line to the beginning of a file makes all issues in the file reported as
new.
The hash will be an opaque value which could be used (along with the
function name) by CmpRuns to identify the same issues. This way, we only
fail to identify the same issue from two runs if the function it appears
in changes (not perfect, but much better than nothing).
llvm-svn: 158180
I falsely assumed that the memory spaces are equal when we reach this
point, they might not be when memory space of one or more is stack or
Unknown. We don't want a region from Heap space alias something with
another memory space.
llvm-svn: 158165
Add a concept of symbolic memory region belonging to heap memory space.
When comparing symbolic regions allocated on the heap, assume that they
do not alias.
Use symbolic heap region to suppress a common false positive pattern in
the malloc checker, in code that relies on malloc not returning the
memory aliased to other malloc allocations, stack.
llvm-svn: 158136
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
When we timeout or exceed a max number of blocks within an inlined
function, we retry with no inlining starting from a node right before
the CallEnter node. We assume the state of that node is the state of the
program before we start evaluating the call. However, the node pruning
removes this node as unimportant.
Teach the node pruning to keep the predecessors of the call enter nodes.
llvm-svn: 157860
improved the pruning heuristics. The current heuristics are pretty good, but they make diagnostics
for uninitialized variables warnings particularly useless in some cases.
llvm-svn: 157734
a horrible bug in GetLazyBindings where we falsely appended a field suffix when traversing 3 or more
layers of lazy bindings. I don't have a reduced test case yet; but I have added the original source
to an internal regression test suite. I'll see about coming up with a reduced test case.
Fixes <rdar://problem/11405978> (for real).
llvm-svn: 156580
to reason about.
As part of taint propagation, we now allow creation of non-integer
symbolic expressions like a cast from int to float.
Addresses PR12511 (radar://11215362).
llvm-svn: 156578
RegionStore, so be explicit about it and generate UnknownVal().
This is a hack to ensure we never produce undefined values for a value
coming from a compound value. (The undefined values can lead to
false positives.)
radar://10127782
llvm-svn: 156446
disruptive, but it allows RegionStore to better "see" through casts that reinterpret arrays of values
as structs. Fixes <rdar://problem/11405978>.
llvm-svn: 156428
This could conceivably cut down on state proliferation, although we don't
use BasicConstraintManager by default anymore. No functionality change.
llvm-svn: 156362
This involves keeping track of three separate types: the symbol type, the
adjustment type, and the comparison type. For example, in "$x + 5 > 0ULL",
if the type of $x is 'signed char', the adjustment type is 'int' and the
comparison type is 'unsigned long long'. Most of the time these three types
will be the same, but we should still do the right thing when the
comparison value is out of range, and wraparound should be calculated in
the adjustment type.
This also re-disables an out-of-bounds test; we were extracting the symbol
from non-additive SymIntExprs, but then throwing away the integer.
Sorry for the large patch; both the basic and range constraint managers needed
to be updated together, since they share code in SimpleConstraintManager.
llvm-svn: 156361
There are more parts of the analyzer that could use the convenience of APSIntType, particularly the constraint engine, but that needs a fair amount of rewriting to handle mixed-type constraints anyway.
llvm-svn: 156360