This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Originally committed as 416fa7720e
Reverted (due to buildbot failure - breaking lldb) in 7a45aeacf3.
I still can't seem to build lldb locally, but Pavel Labath has kindly
provided a potential fix to preserve the old behavior in lldb by
registering a simple recoverable error handler there that prints to the
desired stream in lldb, rather than stderr.
Summary:
Usually when Clang emits an error Fix-It it does two things. It emits the diagnostic and then it fixes the
currently generated AST to reflect the applied Fix-It. While emitting the diagnostic is easy to implement,
fixing the currently generated AST is often tricky. That causes that some Fix-Its just keep the AST as-is or
abort the parsing process entirely. Once the parser stopped, any Fix-Its for the rest of the expression are
not detected and when the user manually applies the Fix-It, the next expression will just produce a new
Fix-It.
This is often occurring with quickly made Fix-Its that are just used to bridge temporary API changes
and that often are not worth implementing a proper API fixup in addition to the diagnostic. To still
give some kind of reasonable user-experience for users that have these Fix-Its and rely on them to
fix their expressions, this patch adds the ability to retry parsing with applied Fix-Its multiple time to
give the normal Fix-It experience where things Clang knows how to fix are not causing actual expression
error (at least when automatically applying Fix-Its is activated).
The way this is implemented is just by having another setting in the expression options that specify how
often we should try applying Fix-Its and then reparse the expression. The default setting is still 1 for everyone
so this should not affect the speed in which we fail to parse expressions.
Reviewers: jingham, JDevlieghere, friss, shafik
Reviewed By: shafik
Subscribers: shafik, abidh
Differential Revision: https://reviews.llvm.org/D77214
This patch fixes a crash that happens on the DWARF expression evaluator
when trying to access the top of the stack while it's empty.
rdar://60512489
Differential Revision: https://reviews.llvm.org/D77108
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch fixes a crash that happens on the DWARF expression evaluator
when trying to access the top of the stack while it's empty.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
There an option: EvaluateExpressionOptions::SetResultIsInternal to indicate
whether the result number should be returned to the pool or not. It
got broken when the PersistentExpressionState was refactored.
This fixes the issue and provides a test of the behavior.
Differential Revision: https://reviews.llvm.org/D76532
Currently when an expression fails to parse and we have a FixIt, we keep
the failed UserExpression around while trying to parse the expression with
applied fixits. This means that we have this rather confusing control flow:
1. Original expression created and parsing attempted.
2. Expression with applied FixIts is created and parsing attempted.
3. Original expression is destroyed and parser deconstructed.
4. Expression with applied FixIts is destroyed and parser deconstructed.
This patch just deletes the original expression so that step 2 and 3 are
swapped and the whole process looks more like just sequentially parsing two
expressions (which is what we actually do here).
Doesn't fix anything just makes the code less fragile.
Summary:
All of our lookup APIs either use `CompilerDeclContext &` or `CompilerDeclContext *` semi-randomly it seems.
This leads to us constantly converting between those two types (and doing nullptr checks when going from
pointer to reference). It also leads to the confusing situation where we have two possible ways to express
that we don't have a CompilerDeclContex: either a nullptr or an invalid CompilerDeclContext (aka a default
constructed CompilerDeclContext).
This moves all APIs to use references and gets rid of all the nullptr checks and conversions.
Reviewers: labath, mib, shafik
Reviewed By: labath, shafik
Subscribers: shafik, arphaman, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74607
Summary:
The only use of this class was to implement the SharedCluster of ValueObjects.
However, the same functionality can be implemented using a regular
std::shared_ptr, and its little-known "sub-object pointer" feature, where the
pointer can point to one thing, but actually delete something else when it goes
out of scope.
This patch reimplements SharedCluster using this feature --
SharedClusterPointer::GetObject now returns a std::shared_pointer which points
to the ValueObject, but actually owns the whole cluster. The only change I
needed to make here is that now the SharedCluster object needs to be created
before the root ValueObject. This means that all private ValueObject
constructors get a ClusterManager argument, and their static Create functions do
the create-a-manager-and-pass-it-to-value-object dance.
Reviewers: teemperor, JDevlieghere, jingham
Subscribers: mgorny, jfb, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74153
StringRef will call strlen on the C string which is inefficient (as ConstString already
knows the string lenght and so does StringRef). This patch replaces all those calls
with GetStringRef() which doesn't recompute the length.
UserExpression::GetJITModule was used to support an option in
UserExpression::Evaluate that let you hold onto the JIT Module used during
the expression evaluation. This was only actually used in one spot --
REPL::IOHandlerInputComplete. That method didn't actually take use the
JIT module it got back, so this feature was not used in practice.
This means that we can delete the support in UserExpression::Evaluate
and delete the UserExpression::GetJITModule method entirely.
Any REPL client should just move to CompletionRequest instead of relying on
the translation code from the old API, so let's remove that translation code.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
and document the shortcomings of LLDB's partially defined DW_OP_piece
handling.
This would manifest as "DW_OP_piece for offset foo but top of stack is
of size bar".
rdar://problem/46262998
Differential Revision: https://reviews.llvm.org/D72880
By switching to Scalars that are backed by explicitly-sized APInts we
can avoid a bug that increases the buffer reserved for a small piece
to the next-largest host integer type.
This manifests as "DW_OP_piece for offset foo but top of stack is of size bar".
Differential Revision: https://reviews.llvm.org/D72879
Summary:
Whenever we cast an LLVM instruction to one of its subclasses, we do a double check if the RTTI
enum value actually allows us to cast the class. I don't see a way this can ever happen as even when
LLVM's RTTI system has some corrupt internal state (which we probably should not test in the first
place) we just reuse LLVM RTTI to do the second check.
This also means that if we ever make an actual programming error in this function (e.g., have a enum
value and then cast it to a different subclass), we just silently fall back to the JIT in our tests.
We also can't test this code in any reasonable way.
This removes the checks and uses `llvm::cast` instead which will raise a fatal error when casting fails.
Reviewers: labath, mib
Reviewed By: labath
Subscribers: abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72596
GetPersistentExpressionStateForLanguage() can return a nullptr if it
cannot construct a typesystem. This patch adds missing nullptr checks
at all uses.
Inspired by rdar://problem/58317195
Differential Revision: https://reviews.llvm.org/D72413
Summary:
Our code was expecting that a single (symbol) file contains only one
kind of location lists. This is not correct (on non-apple platforms, at
least) as a file can compile units with different dwarf versions.
This patch moves the deteremination of location list flavour down to the
compile unit level, fixing this problem. I have also tried to rougly
align the code with the llvm DWARFUnit. Fully matching the API is not
possible because of how lldb's DWARFExpression lives separately from the
rest of the DWARF code, but this is at least a step in the right
direction.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71751
echo -e '#include <unistd.h>\nint main(void){\nsync();return 0;}'|./bin/clang -g -x c -;./bin/lldb -o 'file ./a.out' -o 'b main' -o r -o 'p (void)sync()'
Actual:
error: Expression can't be run, because there is no JIT compiled function
Expected:
<nothing, sync() has been executed>
This patch has been checked by:
D71707: clang-tidy: new bugprone-pointer-cast-widening
https://reviews.llvm.org/D71707
Casting from 32-bit `void *` to `uint64_t` requires an intermediate `uintptr_t` cast otherwise the pointer gets sign-extended:
echo -e '#include <stdio.h>\n#include <stdint.h>\nint main(void){void *p=(void *)0x80000000;unsigned long long ull=(unsigned long long)p;unsigned long long ull2=(unsigned long
long)(uintptr_t)p;printf("p=%p ull=0x%llx ull2=0x%llx\\n",p,ull,ull2);return 0;}'|gcc -Wall -m32 -x c -;./a.out
<stdin>: In function ‘main’:
<stdin>:3:66: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
p=0x80000000 ull=0xffffffff80000000 ull2=0x80000000
With debug output:
Actual:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xffffffffb6f82158, 0x112) went to [0xb6ff8640..0xb6ff86b3)
Code can be run in the target.
Found function, has local address 0xffffffffb6f84000 and remote address 0xffffffffffffffff
Couldn't disassemble function : Couldn't find code range for function _Z12$__lldb_exprPv
Sections:
[0xb6f84000+0x3c]->0xb6ff9020 (alignment 4, section ID 0, name .text)
...
HandleCommand, command did not succeed
error: Expression can't be run, because there is no JIT compiled function
Expected:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xb6faa15c, 0x128) went to [0xb6ff8640..0xb6ff86c3)
IRExecutionUnit::GetRemoteAddressForLocal() found 0xb6fac000 in [0xb6fac000..0xb6fac040], and returned 0xb6ff9020 from [0xb6ff9020..0xb6ff9060].
Code can be run in the target.
Found function, has local address 0xb6fac000 and remote address 0xb6ff9020
Function's code range is [0xb6ff9020+0x40]
...
Function data has contents:
0xb6ff9020: 10 4c 2d e9 08 b0 8d e2 08 d0 4d e2 00 40 a0 e1
...
Function disassembly:
0xb6ff9020: 0xe92d4c10 push {r4, r10, r11, lr}
Differential revision: https://reviews.llvm.org/D71498
Summary:
This patch deletes the lldb location list parser and teaches the
DWARFExpression class to use the parser in llvm instead. I have
centralized all the places doing the parsing into a single
GetLocationExpression function.
In theory the the actual location list parsing should be covered by llvm
tests, and this glue code by our existing location list tests, but since
we don't have that many location list tests, I've tried to extend the
coverage a bit by adding some explicit dwarf5 loclist handling and a
test of the dumping code.
For DWARF4 location lists this should be NFC (modulo small differences
in error handling which should only show up on invalid inputs). In case
of DWARF5, this fixes various missing bits of functionality, most
notably, the lack of support for DW_LLE_offset_pair.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: lldb-commits, dblaikie
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71003
Summary:
Lldb support base address selection entries in location lists was broken
for a long time. This wasn't noticed until llvm started producing these
kinds of entries more frequently with r374600.
In r374769, I made a quick patch which added sufficient support for them
to get the test suite to pass. However, I did not fully understand how
this code operates, and so the fix was not complete. Specifically, what
was lacking was the ability to handle modules which were not loaded at
their preferred load address (for instance, due to ASLR).
Now that I better understand how this code works, I've come to the
conclusion that the current setup does not provide enough information
to correctly process these entries. In the current setup the location
lists were parameterized by two addresses:
- the distance of the function start from the start of the compile unit.
The purpose of this was to make the location ranges relative to the
start of the function.
- the actual address where the function was loaded at. With this the
function-start-relative ranges can be translated to actual memory
locations.
The reason for the two values, instead of just one (the load bias) is (I
think) MachO, where the debug info in the object files will appear to be
relative to the address zero, but the actual code it refers to
can be moved and reordered by the linker. This means that the location
lists need to be "linked" to reflect the locations in the actual linked
file.
These two bits of information were enough to correctly process location
lists which do not contain base address selection entries (and so all
entries are relative to the CU base). However, they don't work with
them because, in theory two base address can be completely unrelated (as
can happen for instace with hot/cold function splitting, where the
linker can reorder the two pars arbitrarily).
To fix that, I split the first parameter into two:
- the compile unit base address
- the function start address, as is known in the object file
The new algorithm becomes:
- the location lists are processed as they were meant to be processed.
The CU base address is used as the initial base address value. Base
address selection entries can set a new base.
- the difference between the "file" and "load" function start addresses
is used to compute the load bias. This value is added to the final
ranges to get the actual memory location.
This algorithm is correct for non-MachO debug info, as there the
location lists correctly describe the code in the final executable, and
the dynamic linker can just move the entire module, not pieces of it. It
will also be correct for MachO if the static linker preserves relative
positions of the various parts of the location lists -- I don't know
whether it actually does that, but judging by the lack of base address
selection support in dsymutil and lldb, this isn't something that has
come up in the past.
I add a test case which simulates the ASLR scenario and demonstrates
that base address selection entries now work correctly here.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70532
Summary:
This was causing problems on linux, where we'd end up calling the
deleting destructor instead of a regular one (because they have the same
demangled name), making a lot of mischief in the process.
The only place where this was necessary (according to the test suite, at
least) was to call a base structor instead of a complete one, but this
is now handled in a more targeted fashion.
TestCallOverriddenMethod is now re-enabled as it now passes reliably.
Reviewers: teemperor, JDevlieghere
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70722
Summary:
Yet another step on the long road towards getting rid of lldb's Stream class.
We probably should just make this some kind of member of Address/AddressRange, but it seems quite often we just push
in random integers in there and this is just about getting rid of Stream and not improving arbitrary APIs.
I had to rename another `DumpAddress` function in FormatEntity that is dumping the content of an address to make Clang happy.
Reviewers: labath
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71052
Summary:
I recently re-discovered that the unsinged stream operators of the
lldb_private::Stream class have a surprising behavior in that they print
the number in hex. This is all the more confusing because the "signed"
versions of those operators behave normally.
Now that, thanks to Raphael, each Stream class has a llvm::raw_ostream
wrapper, I think we should delete most of our formatting capabilities
and just delegate to that. This patch tests the water by just deleting
the operators with the most surprising behavior.
Most of the code using these operators was printing user_id_t values. It
wasn't fully consistent about prefixing them with "0x", but I've tried
to consistenly print it without that prefix, to make it more obviously
different from pointer values.
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70241
Split CallEdge into DirectCallEdge and IndirectCallEdge. Teach
DWARFExpression how to evaluate entry values in cases where the current
activation was created by an indirect call.
rdar://57094085
Differential Revision: https://reviews.llvm.org/D70100
Summary:
swift-lldb currently has to patch the ExpressionKind enum to add support for Swift expressions. If we implement LLVM's RTTI
with a static ID variable instead of a centralised enum we can drop that patch.
Reviewers: labath, davide
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #upstreaming_lldb_s_downstream_patches, #lldb
Differential Revision: https://reviews.llvm.org/D70070
This patch removes the size_t return value and the append parameter
from the remainder of the Find.* functions in LLDB's internal API. As
in the previous patches, this is motivated by the fact that these
parameters aren't really used, and in the case of the append parameter
were frequently implemented incorrectly.
Differential Revision: https://reviews.llvm.org/D69119
llvm-svn: 375160
The DWARFExpression is parsing the location lists in about five places.
Of those, only one actually had proper support for base address
selection entries.
Since r374600, llvm has started to produce location expressions with
base address selection entries more aggresively, which caused some tests
to fail.
This patch adds support for these entries to the places which had it
missing, fixing the failing tests. It also adds a targeted test for the
two of the three fixes, which should continue testing this functionality
even if the llvm output changes. I am not aware of a way to write a
targeted test for the third fix (DWARFExpression::Evaluate).
llvm-svn: 374769
Summary:
There a a few call sites that use FILE* which are easy to
fix without disrupting anything else.
Reviewers: JDevlieghere, jasonmolenda, labath
Reviewed By: JDevlieghere, labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68444
llvm-svn: 374239
Testing whether a name is mangled or not is extremely cheap and can be
done by looking at the first two characters. Mangled knows how to do
it. On the flip side, many call sites that currently pass in an
is_mangled determination do not know how to correctly do it (for
example, they leave out Swift mangling prefixes).
This patch removes this entry point and just forced Mangled to
determine the mangledness of a string itself.
Differential Revision: https://reviews.llvm.org/D68674
llvm-svn: 374180
Summary:
It uses the new ability of ABI plugins to vend llvm::MCRegisterInfo
structs (which is what is needed to turn dwarf register numbers into
strings).
Reviewers: JDevlieghere, aprantl, jasonmolenda
Subscribers: tatyana-krasnukha, lldb-commits
Differential Revision: https://reviews.llvm.org/D67966
llvm-svn: 373208
Summary:
This patch removes File::SetStream() and File::SetDescriptor(),
and replaces most direct uses of File with pointers to File.
Instead of calling SetStream() on a file, we make a new file and
replace it.
My ultimate goal here is to introduce a new API class SBFile, which
has full support for python io.IOStream file objects. These can
redirect read() and write() to python code, so lldb::Files will
need a way to dispatch those methods. Additionally it will need some
form of sharing and assigning files, as a SBFile will be passed in and
assigned to the main IO streams of the debugger.
In my prototype patch queue, I make File itself copyable and add a
secondary class FileOps to manage the sharing and dispatch. In that
case SBFile was a unique_ptr<File>.
(here: https://github.com/smoofra/llvm-project/tree/files)
However in review, Pavel Labath suggested that it be shared_ptr instead.
(here: https://reviews.llvm.org/D67793)
In order for SBFile to use shared_ptr<File>, everything else should
as well.
If this patch is accepted, I will make SBFile use a shared_ptr
I will remove FileOps from future patches and use subclasses of File
instead.
Reviewers: JDevlieghere, jasonmolenda, zturner, jingham, labath
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67891
llvm-svn: 373090