The patch introduces the conversion pattern for function-level
`spv.Variable`. It is modelled as `llvm.alloca` op. If initialized, then
additional store instruction is used. Note that there is no initialization
for arrays and structs since constants of these types are not supported in
LLVM dialect yet. Also, at the moment initialisation is only possible via
`spv.constant` (since `spv.GlobalVariable` conversion is not implemented
yet).
The input code has some scoping is not taken into account and will be
addressed in a different patch.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D84224
This concerns `from/to_extent_tensor`, `size_to_index`, `index_to_size`, and
`const_size` conversion patterns. The new lowering will work directly on indices
and extent tensors. The shape and size values will allow for error values but
are not yet supported by the dialect conversion.
Differential Revision: https://reviews.llvm.org/D84436
The operation `shape.shape_of` now returns an extent tensor `tensor<?xindex>` in
cases when no error are possible. All consuming operation will eventually accept
both, shapes and extent tensors.
Differential Revision: https://reviews.llvm.org/D84160
The default lowering of `assert` calls `abort` in case the assertion is
violated. The failure message is ignored but should be used by custom lowerings
that can assume more about their environment.
Differential Revision: https://reviews.llvm.org/D83886
This revision adds support for much deeper type conversion integration into the conversion process, and enables auto-generating cast operations when necessary. Type conversions are now largely automatically managed by the conversion infra when using a ConversionPattern with a provided TypeConverter. This removes the need for patterns to do type cast wrapping themselves and moves the burden to the infra. This makes it much easier to perform partial lowerings when type conversions are involved, as any lingering type conversions will be automatically resolved/legalized by the conversion infra.
To support this new integration, a few changes have been made to the type materialization API on TypeConverter. Materialization has been split into three separate categories:
* Argument Materialization: This type of materialization is used when converting the type of block arguments when calling `convertRegionTypes`. This is useful for contextually inserting additional conversion operations when converting a block argument type, such as when converting the types of a function signature.
* Source Materialization: This type of materialization is used to convert a legal type of the converter into a non-legal type, generally a source type. This may be called when uses of a non-legal type persist after the conversion process has finished.
* Target Materialization: This type of materialization is used to convert a non-legal, or source, type into a legal, or target, type. This type of materialization is used when applying a pattern on an operation, but the types of the operands have not yet been converted.
Differential Revision: https://reviews.llvm.org/D82831
Introduces the scatter/gather operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
The operations can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather/scatter. The semantics of the operation
closely correspond to those of the corresponding llvm intrinsics.
Note that the operation allows for a dynamic index vector (which is
important for sparse computations). However, this first reference
lowering implementation "serializes" the address computation when
base + index_vector is converted to a vector of pointers. Exploring
how to use SIMD properly during these step is TBD. More general
memrefs and idiomatic versions of striding are also TBD.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D84039
This patch introduces conversion pattern for `spv.selection` op.
The conversion can only be applied to selection with all blocks being
reachable. Moreover, selection with control attributes "Flatten" and
"DontFlatten" is not supported.
Since the `PatternRewriter` hook for block merging has not been implemented
for `ConversionPatternRewriter`, merge and continue blocks are kept
separately.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D83860
This patch introduces conversion for `spv.Branch` and `spv.BranchConditional`
ops. Branch weigths for `spv.BranchConditional` are not supported at the
moment, and conversion in this case fails.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83784
Summary: The logic was conservative but inverted: cases that should remain unmasked became 1-D masked.
Differential Revision: https://reviews.llvm.org/D84051
Lower `shape.shape_eq` to the `scf` (and `std`) dialect. For now, this lowering
is limited to extent tensor operands.
Differential Revision: https://reviews.llvm.org/D82530
To make it clear when shape error values cannot occur the shape operations can
operate on extent tensors. This change updates the lowering for `shape.reduce`
accordingly.
Differential Revision: https://reviews.llvm.org/D83944
Summary: The native alignment may generally not be used when lowering a vector.transfer to the underlying load/store operation. This revision fixes the unmasked load/store alignment to match that of the masked path.
Differential Revision: https://reviews.llvm.org/D83684
Per the Vulkan's SPIR-V environment spec, "for the OpSRem and OpSMod
instructions, if either operand is negative the result is undefined."
So we cannot directly use spv.SRem/spv.SMod if either operand can be
negative. Emulate it via spv.UMod.
Because the emulation uses spv.SNegate, this commit also defines
spv.SNegate.
Differential Revision: https://reviews.llvm.org/D83679
Summary:
These are semantically equivalent, but fmuladd allows decaying the op
into fmul+fadd if there is no fma instruction available. llvm.fma lowers
to scalar calls to libm fmaf, which is a lot slower.
Reviewers: nicolasvasilache, aartbik, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83666
This patch introduces type conversion for SPIR-V structs. Since
handling offset case requires thorough testing, it was left out
for now. Hence, only structs with no offset are currently
supported. Also, structs containing member decorations cannot
be translated.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83403
This patch adds type conversion for 4 SPIR-V types: array, runtime array, pointer
and struct. This conversion is integrated using a separate function
`populateSPIRVToLLVMTypeConversion()` that adds new type conversions. At the moment,
this is a basic skeleton that allows to perfom conversion from SPIR-V array,
runtime array and pointer types to LLVM typesystem. There is no support of array
strides or storage classes. These will be supported on the case by case basis.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83399
This patch adds conversion patterns for `spv.BitFieldSExtract` and `spv.BitFieldUExtract`.
As in the patch for `spv.BitFieldInsert`, `offset` and `count` have to be broadcasted in
vector case and casted to match the type of the base.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82640
This patch introduces 3 new direct conversions for SPIR-V ops:
- `spv.Select`
- `spv.Undef`
- `spv.FMul` that was skipped in the patch with arithmetic ops
Differential Revision: https://reviews.llvm.org/D83291
scf.if currently lacks folding on true / false conditionals.
Such foldings are a bit more involved than can be addressed immediately.
This revision introduces an eager folding for lowering vector.transfer operations in the presence of unrolling.
Differential revision: https://reviews.llvm.org/D83146
This patch introduces conversion pattern for `spv.constant` with scalar
and vector types. There is a special case when the constant value is a
signed/unsigned integer (vector of integers). Since LLVM dialect does not
have signedness semantics, the types had to be converted to signless ints.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82936
Added conversion pattern for SPIR-V `FunctionCallOp`. Based on
specification, it returns no results or a single result, so
can be mapped directly to LLVM dialect's `llvm.call`.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D83030
This patch introduces conversion pattern for `spv.BitFiledInsert` op,
as well as some utility functions to facilitate code reading.
Since `spv.BitFiledInsert` may take both vector and integer operands,
this case was specifically handled by broadcasting values (`count`
and `offset` here) to vectors. Moreover, the types had to be converted
to same bitwidth in order to conform with LLVM dialect rules.
This was done with `zext` when extending (Note that `count` and
`offset` are treated as unsigned) and `trunc` in the opposite case.
For the latter one, truncation is safe since the op is defined only when
`count`/`offset`/their sum is less than the bitwidth of the result.
This introduces a natural bound of the value of 64, which can be
expressed as `i8`.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D82639
This allow lowering to support scf.for and scf.if with results. As right now
spv region operations don't have return value the results are demoted to
Function memory. We create one allocation per result right before the region
and store the yield values in it. Then we can load back the value from
allocation to be able to use the results.
Differential Revision: https://reviews.llvm.org/D82246
Added conversion pattern and tests for `spv.Bitcast` op. This one has
a direct mapping in LLVM dialect so `DirectConversionPattern` was used.
Differential Revision: https://reviews.llvm.org/D82748
This patch introduces new conversion patterns for bit and logical
negation op: `spv.Not` and `spv.LogicalNot`. They are implemented
by applying xor on the operand and mask with all bits set.
Differential Revision: https://reviews.llvm.org/D82637
Summary:
The patch makes the index type lowering of the GPU to NVVM/ROCDL conversion configurable. It introduces a pass option that controls the bitwidth used when lowering index computations and uses the LowerToLLVMOptions structure to control the Standard to LLVM lowering.
This commit fixes a use-after-free bug introduced by the reverted commit d10b1a3. It implements the following changes:
- Added a getDefaultOptions method to the LowerToLLVMOptions struct that returns a reference to statically allocated default options.
- Use the getDefaultOptions method to provide default LowerToLLVMOptions (instead of an initializer list).
- Added comments to clarify the required lifetime of the LowerToLLVMOptions
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D82475
`llvm.mlir.constant` was originally introduced as an LLVM dialect counterpart
to `std.constant`. As such, it was supporting "function pointer" constants
derived from the symbol name. This is different from `std.constant` that allows
for creation of a "function" constant since MLIR, unlike LLVM IR, supports
this. Later, `llvm.mlir.addressof` was introduced as an Op that obtains a
constant pointer to a global in the LLVM dialect. It naturally extends to
functions (in LLVM IR, functions are globals) and should be used for defining
"function pointer" values instead.
Fixes PR46344.
Differential Revision: https://reviews.llvm.org/D82667
When the origin of a shape is an extent tensor the operation `get_extent` can be
lowered directly to `extract_element`.
This choice circumvents the necessity to materialize the shape in memory.
Differential Revision: https://reviews.llvm.org/D82645
When the shape is derived from a tensor argument the shape extent can be derived
directly from that tensor with `std.dim`.
This lowering pattern circumvents the necessity to materialize the shape in
memory.
Differential Revision: https://reviews.llvm.org/D82644
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
Implemented conversion for `spv.BitReverse` and `spv.BitCount`. Since ODS
generates builders in a different way for LLVM dialect intrinsics, I
added attributes to build method in `DirectConversionPattern` class. The
tests for these ops are in `bitwise-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D82286
Initially, unranked memref descriptors in the LLVM dialect were designed only
to be passed into functions. An assertion was guarding against returning
unranked memrefs from functions in the standard-to-LLVM conversion. This is
insufficient for functions that wish to return an unranked memref such that the
caller does not know the rank in advance, and hence cannot allocate the
descriptor and pass it in as an argument.
Introduce a calling convention for returning unranked memref descriptors as
follows. An unranked memref descriptor always points to a ranked memref
descriptor stored on stack of the current function. When an unranked memref
descriptor is returned from a function, the ranked memref descriptor it points
to is copied to dynamically allocated memory, the ownership of which is
transferred to the caller. The caller is responsible for deallocating the
dynamically allocated memory and for copying the pointed-to ranked memref
descriptor onto its stack.
Provide default lowerings for std.return, std.call and std.indirect_call that
maintain the conversion defined above.
This convention is additionally exercised by a runtime test to guard against
memory errors.
Differential Revision: https://reviews.llvm.org/D82647
Lower `shape.rank` to standard dialect.
A shape's size is the same as the extent of the first and only dimension of the
`tensor<?xindex>` it is represented by.
Differential Revision: https://reviews.llvm.org/D82080
This patch introduces conversion patterns for `spv.module` and `spv._module_end`.
SPIR-V module is converted into `ModuleOp`. This will play a role of enclosing
scope to LLVM ops. At the moment, SPIR-V module attributes (such as memory model,
etc) are ignored.
Differential Revision: https://reviews.llvm.org/D82468
This patch provides an implementation for `spv.func` conversion. The pattern
is populated in a separate method added to the pass. At the moment, the type
signature conversion only includes the supported types. The conversion pattern
also matches SPIR-V function control attributes to LLVM function attributes.
Those are modelled as `passthrough` attributes in LLVM dialect. The following
mapping are used:
- None: no attributes passed
- Inline: `alwaysinline` seems to be the right equivalent (`inlinehint` is
semantically weaker in my opinion)
- DontInline: `noinline`
- Pure and Const: I think those can be modelled as `readonly` and `readnone`
attributes respectively.
Also, 2 patterns added for return ops conversion (`spv.Return` for void return
and `spv.ReturnValue` for a single value return).
Differential Revision: https://reviews.llvm.org/D81931
This patch extends the AccessChainOp index type handling to be able to deal with
all Integer type indices (i.e., all bit-widths and signedness symantics).
There were two ways of achieving this:
1- Backward compatible: The new way of handling the indices will assume that
an index type is i32 by default if not specified in the assembly format,
this way all the old tests would pass correctly.
2- Enforce the format: This unifies the spv.AccessChain Op format and all the old
tests had to be updated to reflect this change or else they fail.
I picked option-2 to unify the Op format and avoid having optional index-type fields
that can lead to somewhat confusing tests format and multiple representations for
the same Op with undocumented assumption that an index is i32 unless stated.
Nonetheless, reverting to option-1 should be straightforward if preferred or needed.
Differential Revision: https://reviews.llvm.org/D81763
The patch makes the index type lowering of the GPU to NVVM/ROCDL
conversion configurable. It introduces a pass option that controls the
bitwidth used when lowering index computations.
Differential Revision: https://reviews.llvm.org/D80285
Subview operations are not natively supported downstream in the spirv path.
This change allows removing subview when used by vector transfer the same way
we already do it when they are used by LoadOp/StoreOp
Differential Revision: https://reviews.llvm.org/D82106
Use direct vector constants for the 1-D case. This approach
scales much better than generating elaborate insertion operations
that are eventually folded into a constant. We could of course
generalize the 1-D case to higher ranks, but this simplification
already helps in scaling some microbenchmarks that would formerly
crash on the intermediate IR length.
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D82144
Lower `shape.shape_of` to standard dialect.
This lowering supports statically and dynamically shaped tensors.
Support for unranked tensors will be added as part of the lowering to `scf`.
Differential Revision: https://reviews.llvm.org/D82098
Summary:
The "i1" (viz. bool) type does not have a proper equivalent on the "C"
size. So, to avoid any ABIs issues, we simply use print_i32 on an i32
value of one or zero for true and false. This has the added advantage
that one less function needs to be implemented when porting the runtime
support library.
Reviewers: ftynse, bkramer, nicolasvasilache
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82048
Added support of simple logical ops: `LogicalAnd`, `LogicalOr`,
`LogicalEqual` and `LogicalNotEqual`. Added a missing conversion
for `UMod` op.
Also, implemented SPIR-V cast ops conversion. There are 4 simple
case where there is a clear equivalent in LLVM (e.g. `ConvertFToS`
is `fptosi`). For `FConvert`, `SConvert` and `UConvert` we
distinguish between truncation and extension based on the bit
width of the operand.
Differential Revision: https://reviews.llvm.org/D81812
Implement the missing lowering from `std.dim` to the LLVM dialect in case of a
dynamic dimension.
Differential Revision: https://reviews.llvm.org/D81834
This patch has shift ops conversion implementation. In SPIR-V dialect,
`Shift` and `Base` may have different bit width. On the contrary,
in LLVM dialect both `Base` and `Shift` have to be of the same bit width.
This leads to the following cases:
- if `Base` has the same bit width as `Shift`, the conversion is
straightforward.
- if `Base` has a greater bit width than `Shift`, shift is sign/zero
extended first. Then the extended value is passed to the shift.
- otherwise the conversion is considered to be illegal.
Differential Revision: https://reviews.llvm.org/D81546
This option avoids to accidentally reuse variable across -LABEL match,
it can be explicitly opted-in by prefixing the variable name with $
Differential Revision: https://reviews.llvm.org/D81531
Implemented `FComparePattern` and `IComparePattern` classes
that provide conversion of SPIR-V comparison ops (such as
`spv.FOrdGreaterThanEqual` and others) to LLVM dialect.
Also added tests in `comparison-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D81487
Following the previous revision `D81100`, this commit implements a templated class
that would provide conversion patterns for “straightforward” SPIR-V ops into
LLVM dialect. Templating allows to abstract away from concrete implementation
for each specific op. Those are mainly binary operations. Currently supported
and tested ops are:
- Arithmetic ops: `IAdd`, `ISub`, `IMul`, `FAdd`, `FSub`, `FMul`, `FDiv`, `FNegate`,
`SDiv`, `SRem` and `UDiv`
- Bitwise ops: `BitwiseAnd`, `BitwiseOr`, `BitwiseXor`
The implementation relies on `SPIRVToLLVMConversion` class that makes use of
`OpConversionPattern`.
Differential Revision: https://reviews.llvm.org/D81305
Allow for dynamic indices in the `dim` operation.
Rather than an attribute, the index is now an operand of type `index`.
This allows to apply the operation to dynamically ranked tensors.
The correct lowering of dynamic indices remains to be implemented.
Differential Revision: https://reviews.llvm.org/D81551
Having the input dumped on failure seems like a better
default: I debugged FileCheck tests for a while without knowing
about this option, which really helps to understand failures.
Remove `-dump-input-on-failure` and the environment variable
FILECHECK_DUMP_INPUT_ON_FAILURE which are now obsolete.
Differential Revision: https://reviews.llvm.org/D81422
Summary:
The NVVM target only provides implementations for tanh etc. on f32 and
f64 operands. To also support f16, we now insert operations to extend to f32
and truncate back to f16 around the intrinsic call.
Differential Revision: https://reviews.llvm.org/D81473
These commits set up the skeleton for SPIR-V to LLVM dialect conversion.
I created SPIR-V to LLVM pass, registered it in Passes.td, InitAllPasses.h.
Added a pattern for `spv.BitwiseAndOp` and tests for it. Integer, float
and vector types are converted through LLVMTypeConverter.
Differential Revision: https://reviews.llvm.org/D81100
The operations `to_extent_tensor` and `from_extent_tensor` become no-ops when
lowered to the standard dialect.
This is possible with a lowering from `shape.shape` to `tensor<?xindex>`.
Differential Revision: https://reviews.llvm.org/D81162
Recently introduced allocation hoisting is quite conservative on the cases when it triggers.
This revision makes it such that the allocations for vector transfer lowerings are hoisted
to the top of the function.
This should be revisited in the context of parallelism and is a temporary workaround.
Differential Revision: https://reviews.llvm.org/D81253
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
Add SubgroupId, SubgroupSize and NumSubgroups to GPU dialect ops and add the
lowering of those ops to SPIRV.
Differential Revision: https://reviews.llvm.org/D81042
Add a new pass to lower operations from the `shape` to the `std` dialect.
The conversion applies only to the `size_to_index` and `index_to_size`
operations and affected types.
Other patterns will be added as needed.
Differential Revision: https://reviews.llvm.org/D81091
Keeping in the affine.for to gpu.launch conversions, which should
probably be the affine.parallel to gpu.launch conversion as well.
Differential Revision: https://reviews.llvm.org/D80747
https://reviews.llvm.org/D79246 introduces alignment propagation for vector transfer operations. Unfortunately, the alignment calculation is incorrect and can result in crashes.
This revision fixes the calculation by using the natural alignment of the memref elemental type, instead of the resulting vector type.
If more alignment is desired, it can be done in 2 ways:
1. use a proper vector.type_cast to transform a memref<axbxcxdxf32> into a memref<axbxvector<cxdxf32>> giving a natural alignment of vector<cxdxf32>
2. add an alignment attribute to vector transfer operations and propagate it.
With this change the alignment in the relevant tests goes down from 128 to 4.
Lastly, a few minor cleanups are performed and the custom `isMinorIdentityMap` is deprecated.
Differential Revision: https://reviews.llvm.org/D80734
Make ConvertKernelFuncToCubin pass to be generic:
- Rename to ConvertKernelFuncToBlob.
- Allow specifying triple, target chip, target features.
- Initializing LLVM backend is supplied by a callback function.
- Lowering process from MLIR module to LLVM module is via another callback.
- Change mlir-cuda-runner to adopt the revised pass.
- Add new tests for lowering to ROCm HSA code object (HSACO).
- Tests for CUDA and ROCm are kept in separate directories.
Differential Revision: https://reviews.llvm.org/D80142
This allocation of a workgroup memory is lowered to a
spv.globalVariable. Only static size allocation with element type
being int or float is handled. The lowering does account for the
element type that are not supported in the lowered spv.module based on
the extensions/capabilities and adjusts the number of elements to get
the same byte length.
Differential Revision: https://reviews.llvm.org/D80411
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.
In this commit:
- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.
Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.
Differential Revision: https://reviews.llvm.org/D80167
This reverts commit cdb6f05e2d.
The build is broken with:
You have called ADD_LIBRARY for library obj.MLIRGPUtoCUDATransforms without any source files. This typically indicates a problem with your CMakeLists.txt file
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.
In this commit:
- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.
Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.
Differential Revision: https://reviews.llvm.org/D80167
The subview semantics changes recently to allow for more natural
representation of constant offsets and strides. The legalization of
subview op for lowering to SPIR-V needs to account for this.
Also change the linearization to use the strides from the affine map
of a memref.
Differential Revision: https://reviews.llvm.org/D80270
Summary:
Previously, the only support partial lowering from vector transfers to SCF was
going through loops. This requires a dedicated allocation and extra memory
roundtrips because LLVM aggregates cannot be indexed dynamically (for more
details see the [deep-dive](https://mlir.llvm.org/docs/Dialects/Vector/#deeperdive)).
This revision allows specifying full unrolling which removes this additional roundtrip.
This should be used carefully though because full unrolling will spill, negating the
benefits of removing the interim alloc in the first place.
Proper heuristics are left for a later time.
Differential Revision: https://reviews.llvm.org/D80100
Originally, the SCFToStandard conversion only declared Ops from the Standard
dialect as legal after conversion. This is undesirable as it would fail the
conversion if the SCF ops contained ops from any other dialect. Furthermore,
this would be problematic for progressive lowering of `scf.parallel` to
`scf.for` after `ensureRegionTerminator` is made aware of the pattern rewriting
infrastructure because it creates temporary `scf.yield` operations declared
illegal. Change the legalization target to declare any op other than `scf.for`,
`scf.if` and `scf.parallel` legal.
Differential Revision: https://reviews.llvm.org/D80137
Summary:
Previously, after applying the mask, a negative number would convert to a
positive number because the sign flag was forgotten. This patch adds two more
shift operations to do the sign extension. This assumes that we're using two's
complement.
This patch applies sign extension unconditionally when loading a unspported integer width, and it relies the pattern to do the casting because the signedness semantic is carried by operator itself.
Differential Revision: https://reviews.llvm.org/D79753
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.
Differential Revision: https://reviews.llvm.org/D80098
Summary:
This revision makes the use of vector transfer operatons more idiomatic by
allowing to omit and inferring the permutation_map.
Differential Revision: https://reviews.llvm.org/D80092
The following Conversions are affected: LoopToStandard -> SCFToStandard,
LoopsToGPU -> SCFToGPU, VectorToLoops -> VectorToSCF. Full file paths are
affected. Additionally, drop the 'Convert' prefix from filenames living under
lib/Conversion where applicable.
API names and CLI options for pass testing are also renamed when applicable. In
particular, LoopsToGPU contains several passes that apply to different kinds of
loops (`for` or `parallel`), for which the original names are preserved.
Differential Revision: https://reviews.llvm.org/D79940
have abi attributes.
To ensure there is no conflict, use the default ABI only when none of
the arguments have the spv.interface_var_abi attribute. This also
implies that if one of the arguments has a spv.interface_var_abi
attribute, all of them should have it as well.
Differential Revision: https://reviews.llvm.org/D77232
This revision starts decoupling the include the kitchen sink behavior of Linalg to LLVM lowering by inserting a -convert-linalg-to-std pass.
The lowering of linalg ops to function calls was previously lowering to memref descriptors by having both linalg -> std and std -> LLVM patterns in the same rewrite.
When separating this step, a new issue occurred: the layout is automatically type-erased by this process. This revision therefore introduces memref casts to perform these type erasures explicitly. To connect everything end-to-end, the LLVM lowering of MemRefCastOp is relaxed because it is artificially more restricted than the op semantics. The op semantics already guarantee that source and target MemRefTypes are cast-compatible. An invalid lowering test now becomes valid and is removed.
Differential Revision: https://reviews.llvm.org/D79468
This patch adds `affine.vector_load` and `affine.vector_store` ops to
the Affine dialect and lowers them to `vector.transfer_read` and
`vector.transfer_write`, respectively, in the Vector dialect.
Reviewed By: bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D79658
All ops of the SCF dialect now use the `scf.` prefix instead of `loop.`. This
is a part of dialect renaming.
Differential Revision: https://reviews.llvm.org/D79844
Summary:
Makes this operation runnable on CPU by generating MLIR instructions
that are eventually folded into an LLVM IR constant for the mask.
Reviewers: nicolasvasilache, ftynse, reidtatge, bkramer, andydavis1
Reviewed By: nicolasvasilache, ftynse, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79815
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
Lowering to LLVM is updated, simplified and now supports all cases.
A mixed static-dynamic mode test that wouldn't previously lower is added.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Differential Revision: https://reviews.llvm.org/D79662
This reverts commit 80d133b24f.
Per Stephan Herhut: The canonicalizer pattern that was added creates
forms of the subview op that cannot be lowered.
This is shown by failing Tensorflow XLA tests such as:
tensorflow/compiler/xla/service/mlir_gpu/tests:abs.hlo.test
Will provide more details offline, they rely on logs from private CI.
Summary:
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Reviewers: ftynse, mravishankar, antiagainst, rriddle!, andydavis1, timshen, asaadaldien, stellaraccident
Reviewed By: mravishankar
Subscribers: aartbik, bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79662
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
Complex addition and substraction are the first two binary operations on complex
numbers.
Remaining operations will follow the same pattern.
Differential Revision: https://reviews.llvm.org/D79479
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753
Summary:
As D78974, this patch implements the emulation for store op. The emulation is
done with atomic operations. E.g., if the storing value is i8, rewrite the
StoreOp to:
1) load a 32-bit integer
2) clear 8 bits in the loading value
3) store 32-bit value back
4) load a 32-bit integer
5) modify 8 bits in the loading value
6) store 32-bit value back
The step 1 to step 3 are done by AtomicAnd as one atomic step, and the step 4
to step 6 are done by AtomicOr as another atomic step.
Differential Revision: https://reviews.llvm.org/D79272
Add `CreateComplexOp`, `ReOp`, and `ImOp` to the standard dialect.
This is the first step to support complex numbers.
Differential Revision: https://reviews.llvm.org/D79159
Summary:
Maps ZeroExtendIOp and TruncateIOp to spirv::UConvertOp and spirv::SConvertOp.
Depends On D78974
Differential Revision: https://reviews.llvm.org/D79143
Summary:
The current implementation in SPIRVTypeConverter just unconditionally turns
everything into 32-bit if it doesn't meet the requirements of extensions or
capabilities. In this case, we can load a 32-bit value and then do bit
extraction to get the value.
Differential Revision: https://reviews.llvm.org/D78974
- Extract common logic between -convert-gpu-to-nvvm and -convert-gpu-to-rocdl.
- Cope with the fact that alloca operates on different addrspaces between NVVM
and ROCDL.
- Modernize unit tests for ROCDL dialect.
Differential Revision: https://reviews.llvm.org/D79021
This revision allows masked vector transfers with m-D buffers and n-D vectors to
progressively lower to m-D buffer and 1-D vector transfers.
For a vector.transfer_read, assuming a `memref<(leading_dims) x (major_dims) x (minor_dims) x type>` and a `vector<(minor_dims) x type>` are involved in the transfer, this generates pseudo-IR resembling:
```
if (any_of(%ivs_major + %offsets, <, major_dims)) {
%v = vector_transfer_read(
{%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
%ivs_minor):
memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
vector<(minor_dims) x type>;
} else {
%v = splat(vector<(minor_dims) x type>, %fill)
}
```
Differential Revision: https://reviews.llvm.org/D79062
type operands.
The instructions used to convert std.cmpi cannot have i1 types
according to SPIR-V specification. A different set of operations are
specified in the SPIR-V spec for comparing boolean types. Enhance the
StandardToSPIRV lowering to target these instructions when operands to
std.cmpi operation are of i1 type.
Differential Revision: https://reviews.llvm.org/D79049
On certain targets std.subview should be able to take memrefs from non-zero
addrspaces. Improve lowering logic to llvm dialect and amend the tests.
Differential Revision: https://reviews.llvm.org/D79024
Enhance lowering logic and tests so vector.transfer_read and
vector.transfer_write take memrefs on non-zero addrspaces.
Differential Revision: https://reviews.llvm.org/D79023
Summary: This revision extends the lowering of vector transfers to work with n-D memref and 1-D vector where the permutation map is an identity on the most minor dimensions (1 for now).
Differential Revision: https://reviews.llvm.org/D78925
Summary:
Previously operations like std.load created methods for obtaining their
effects but did not inherit from the SideEffect interfaces when their
parameters were decorated with the information. The resulting situation
was that passes had no information on the SideEffects of std.load/store
and had to treat them more cautiously. This adds the inheritance
information when creating the methods.
As a side effect, many tests are modified, as they were using std.load
for testing and this oepration would be folded away as part of pattern
rewriting. Tests are modified to use store or to reutn the result of the
std.load.
Reviewers: mravishankar, antiagainst, nicolasvasilache, herhut, aartbik, ftynse!
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78802
`addArgument()` is not undoable and should not be used in
ConversionPattern, therefore replacing `splitBlock()` with
`createBlock()`, that creates a block with specified args.
Differential Revision: https://reviews.llvm.org/D78731
Summary:
Use a nested symbol to identify the kernel to be invoked by a `LaunchFuncOp` in the GPU dialect.
This replaces the two attributes that were used to identify the kernel module and the kernel within seperately.
Differential Revision: https://reviews.llvm.org/D78551
Summary:
Use the shortcu `kernel` for the `gpu.kernel` attribute of `gpu.func`.
The parser supports this and test cases are easier to read.
Differential Revision: https://reviews.llvm.org/D78542
memref types with dynamic dimensions do not have a compile-time
known size. They should be mapped to SPIR-V runtime array types.
Differential Revision: https://reviews.llvm.org/D78197
Summary:
Workgroup size is written into the kernel. So to properly modelling
vulkan launch, we have to skip local workgroup size for vulkan launch
call op.
Differential Revision: https://reviews.llvm.org/D78307
Summary:
Rather than having a full, recursive, lowering of vector.broadcast
to LLVM IR, it is much more elegant to have a progressive lowering
of each vector.broadcast into a lower dimensional vector.broadcast,
until only elementary vector operations remain. This results
in more elegant, step-wise code, that is easier to understand.
Also makes some optimizations in the generated code.
Reviewers: nicolasvasilache, mehdi_amini, andydavis1, grosul1
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78071
Summary:
This operation occurs during collapseParallelLoops, so we constant fold
them also to allow more situations of determining a loop invariant upper
bound when lowering to the GPU dialect from the Loop dialect.
Differential Revision: https://reviews.llvm.org/D77723
This commit added stride support in runtime array types. It also
adjusted the assembly form for the stride from `[N]` to `stride=N`.
This makes the IR more readable, especially for the cases where
one mix array types and struct types.
Differential Revision: https://reviews.llvm.org/D78034
Summary:
This revision adds support to lower 1-D vector transfers to LLVM.
A mask of the vector length is created that compares the base offset + linear index to the dim of the vector.
In each position where this does not overflow (i.e. offset + vector index < dim), the mask is set to 1.
A notable fact is that the lowering uses llvm.dialect_cast to allow writing code in the simplest form by targeting the simplest mix of vector and LLVM dialects and
letting other conversions kick in.
Differential Revision: https://reviews.llvm.org/D77703
Support to recognize and deal with aligned_alloc was recently added to
LLVM's TLI/MemoryBuiltins and its various optimization passes. This
revision adds support for generation of aligned_alloc's when lowering
AllocOp from std to LLVM. Setting 'use-aligned_alloc=1' will lead to
aligned_alloc being used for all heap allocations. An alignment and size
that works with the constraints of aligned_alloc is chosen.
Using aligned_alloc is preferable to "using malloc and adjusting the
allocated pointer to align for indexing" because the pointer access
arithmetic done for the latter only makes it harder for LLVM passes to
deal with for analysis, optimization, attribute deduction, and rewrites.
Differential Revision: https://reviews.llvm.org/D77528
Introduce the alloca op for stack memory allocation. When converting to the
LLVM dialect, this is lowered to an llvm.alloca. Refactor the std to
llvm conversion for alloc op to reuse with alloca. Drop useAlloca option
with alloc op lowering.
Differential Revision: https://reviews.llvm.org/D76602
Summary:
A recent extension allowed the `loop.if` operation to return results yielded by
its regions. However, such operations could not be lowered to a CFG of standard
operations because it would have required to modify the argument list of a
block, which is not allowed in a conversion pattern. Now that the conversion
infrastructure supports block creation, use it to create a block with an
argument list that dominates the operations following the `loop.if` and forward
the results as arguments of this block.
Depends On D77416
Differential Revision: https://reviews.llvm.org/D77418
C interface emission is controlled by a flag and has coarse granularity.
With this coarse control, interfaces are emitted for all external functions.
This makes is easy to get undefined symbols.
This revision adds support for controlling per-function emission with an "emit_c_interface" attribute.
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Move lower-affine.mlir from test/Transforms to
test/Conversion/AffineToStandard/. Other related NFC.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D77008
This change adds a new option to the StandardToLLVM lowering to configure
the bitwidth of the index type independently of the target architecture's
pointer size.
Differential revision: https://reviews.llvm.org/D76353
Summary: The current ConvertStandardToLLVM phase lowers the standard TanHOp to function calls to external tanh symbols. However, this leads to misunderstandings since these external symbols are not defined anywhere. This commit removes the TanHOp lowering functionality from ConvertStandardToLLVM, adapts the LowerGpuOpsToNVVMOps and LowerGpuOpsToROCDLOps passes and adjusts the affected test cases.
Reviewers: mravishankar, herhut
Subscribers: jholewinski, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75509
gpu.launch
Current implementation of lowering from loop.parallel to gpu.launch
uses a DictionaryAttr to specify the mapping. Moving this attribute to
be auto-generated from specification as a StructAttr. This simplifies
a lot the logic of looking up and creating this attribute.
Differential Revision: https://reviews.llvm.org/D76165
The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.
One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.
This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.
Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.
The revision will allow trading off HW-specific vs generic abstractions in MLIR.
Differential Revision: https://reviews.llvm.org/D75987
This commit merges the DRR pattern for std.constant to spv.constant
conversion into the C++ OpConversionPattern. This allows us to have
remove the DRR pattern file. Along the way, this commit enhanced
std.constant to spv.constant conversion to consider type conversions,
which means converting the underlying attributes if necessary.
Differential Revision: https://reviews.llvm.org/D76246
Previously we have a few patterns that were written with DRR. DRR
at the moment does not work nicely with dialect conversion framework.
It generates normal RewritePatterns, while the dialect conversion
framework requires ConversionPatterns to take into consideration
the type conversion. So this commit starts to change existing DRR
patterns for standard ops to OpConversionPattern to incorporate the
SPIR-V type conversion. All patterns are converted except the one
for constant ops, which will happen in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D76245
Non-32-bit scalar types requires special hardware support that may
not exist on all Vulkan-capable GPUs. This is reflected as non-32-bit
scalar types require special capabilities or extensions to be used.
This commit makes SPIRVTypeConverter target environment aware so
that it can properly convert standard types to what is accepted on
the target environment.
Right now if a scalar type bitwidth is not supported in the target
environment, we use 32-bit unconditionally. This requires Vulkan
runtime to also feed in data with a matched bitwidth and layout,
especially for interface types. The Vulkan runtime can do that by
inspecting the SPIR-V module. Longer term, we might want to introduce
a way to control how such case are handled and explicitly fail
if wanted.
Differential Revision: https://reviews.llvm.org/D76244
Previously we only consider the version/extension/capability requirement
on the op itself. This commit updates SPIRVConversionTarget to also
take into consideration the values' types when deciding op legality.
Differential Revision: https://reviews.llvm.org/D75876
Previously in SPIRVTypeConverter, we always convert memref types
to StorageBuffer regardless of their memory spaces. This commit
fixes that to let the conversion to look into memory space
properly. For this purpose, a mapping between SPIR-V storage class
and memref memory space is introduced. The mapping is arbitary
decided at the moment and the hope is that we can leverage
string memory space later to be more clear.
Now spv.interface_var_abi cannot contain storage class unless it's
attached to a scalar value, where we need the storage class as side
channel information. Verifications and tests are properly adjusted.
Differential Revision: https://reviews.llvm.org/D76241
MLIR supports terminators that have the same successor block with different
block operands, which cannot be expressed in the LLVM's phi-notation as the
block identifier is used to tell apart the predecessors. This limitation can be
worked around by branching to a new block instead, with this new block
unconditionally branching to the original successor and forwarding the
argument. Until now, this transformation was performed during the conversion
from the Standard to the LLVM dialect. This does not scale well to multiple
dialects targeting the LLVM dialect as all of them would have to be aware of
this limitation and perform the preparatory transformation. Instead, do it as a
separate pass and run it immediately before the translation.
Differential Revision: https://reviews.llvm.org/D75619
A memref argument is converted into a pointer-to-struct argument
of type `{T*, T*, i64, i64[N], i64[N]}*` in the wrapper function,
where T is the converted element type and N is the memref rank.
Differential Revision: https://reviews.llvm.org/D76059
This commits changes the definition of spv.module to use the #spv.vce
attribute for specifying (version, capabilities, extensions) triple
so that we can have better API and custom assembly form. Since now
we have proper modelling of the triple, (de)serialization is wired up
to use them.
With the new UpdateVCEPass, we don't need to manually specify the
required extensions and capabilities anymore when creating a spv.module.
One just need to call UpdateVCEPass before serialization to get the
needed version/extensions/capabilities.
Differential Revision: https://reviews.llvm.org/D75872
We also need the (version, capabilities, extensions) triple on the
spv.module op. Thus far we have been using separate 'extensions'
and 'capabilities' attributes there and 'version' is missing. Creating
a separate attribute for the trip allows us to reuse the assembly
form and verification.
Differential Revision: https://reviews.llvm.org/D75868
Summary:
This replaces the direct lowering of vector.outerproduct to LLVM with progressive lowering into elementary vectors ops to avoid having the similar lowering logic at several places.
NOTE1: with the new progressive rule, the lowered llvm is slightly more elaborate than with the direct lowering, but the generated assembly is just as optimized; still if we want to stay closer to the original, we should add a "broadcast on extract" to shuffle rewrite (rather than special cases all the lowering steps)
NOTE2: the original outerproduct lowering code should now be removed but some linalg test work directly on vector and contain some dead code, so this requires another CL
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75956
* Adds GpuLaunchFuncToVulkanLaunchFunc conversion pass.
* Moves a serialization of the `spirv::Module` from LaunchFuncToVulkanCalls pass to newly created pass.
* Updates LaunchFuncToVulkanCalls instrumentation pass, adds `initVulkan` and `deinitVulkan` runtime calls.
* Adds `bindResource` call to bind specifc resource by the given descriptor set and descriptor binding.
* Eliminates static construction and desctruction of `VulkanRuntimeManager`.
Differential Revision: https://reviews.llvm.org/D75192
Summary: This op mirrors the llvm.intr counterpart and allows lowering + type conversions in a progressive fashion.
Differential Revision: https://reviews.llvm.org/D75775
The existing API for successor operands on operations is in the process of being removed. This revision simplifies a later one that completely removes the existing API.
Differential Revision: https://reviews.llvm.org/D75316
This attribute details the segment sizes for operand groups within the operation. This revision add support for automatically populating this attribute in the declarative parser.
Differential Revision: https://reviews.llvm.org/D75315
Recently introduced support for converting sequential reduction loops to
CFG of basic blocks in the Standard dialect makes it possible to perform
a staged conversion of parallel reduction loops into a similar CFG by
using sequential loops as an intermediate step. This is already the case
for parallel loops without reduction, so extend the pattern to support
an additional use case.
Differential Revision: https://reviews.llvm.org/D75599
Summary:
This adds an rsqrt op to the standard dialect, and lowers
it as 1 / sqrt to the LLVM dialect.
Differential Revision: https://reviews.llvm.org/D75353
Summary:
Introduce support for converting loop.for operations with loop-carried values
to a CFG in the standard dialect. This is achieved by passing loop-carried
values as block arguments to the loop condition block. This block dominates
both the loop body and the block immediately following the loop, so the
arguments of this block are remain visible there.
Differential Revision: https://reviews.llvm.org/D75513
Summary: Added brackets to fix the loop trip count computation.
The brackets ensure the bounds are subtracted before we divide
the result by the step of the loop.
Differential Revision: https://reviews.llvm.org/D75449
Summary:
The original patch had TODOs to add support for step computations,
which this commit addresses. The computations are expressed using
affine expressions so that the affine canonicalizers can simplify
the full bound and index computations.
Also cleans up the code a little and exposes the pass in the
header file.
Differential Revision: https://reviews.llvm.org/D75052
Summary:
The RFC for this op is here: https://llvm.discourse.group/t/rfc-add-std-atomic-rmw-op/489
The std.atmomic_rmw op provides a way to support read-modify-write
sequences with data race freedom. It is intended to be used in the lowering
of an upcoming affine.atomic_rmw op which can be used for reductions.
A lowering to LLVM is provided with 2 paths:
- Simple patterns: llvm.atomicrmw
- Everything else: llvm.cmpxchg
Differential Revision: https://reviews.llvm.org/D74401
This patch implements the RFCs proposed here:
https://llvm.discourse.group/t/rfc-modify-ifop-in-loop-dialect-to-yield-values/463https://llvm.discourse.group/t/rfc-adding-operands-and-results-to-loop-for/459/19.
It introduces the following changes:
- All Loop Ops region, except for ReduceOp, terminate with a YieldOp.
- YieldOp can have variadice operands that is used to return values out of IfOp and ForOp regions.
- Change IfOp and ForOp syntax and representation to define values.
- Add unit-tests and update .td documentation.
- YieldOp is a terminator to loop.for/if/parallel
- YieldOp custom parser and printer
Lowering is not supported at the moment, and will be in a follow-up PR.
Thanks.
Reviewed By: bondhugula, nicolasvasilache, rriddle
Differential Revision: https://reviews.llvm.org/D74174
The commit switching the calling convention for memrefs (5a1778057)
inadvertently introduced a bug in the function argument attribute conversion:
due to incorrect indexing of function arguments it was not assigning the
attributes to the arguments beyond those generated from the first original
argument. This was not caught in the commit since the test suite does have a
test for converting multi-argument functions with argument attributes. Fix the
bug and add relevant tests.
Implement a pass to convert gpu.launch_func op into a sequence of
Vulkan runtime calls. The Vulkan runtime API surface is huge so currently we
don't expose separate external functions in IR for each of them, instead we
expose a few external functions to wrapper libraries which manages
Vulkan runtime.
Differential Revision: https://reviews.llvm.org/D74549
Summary:
To unblock other work, this implements basic lowering based on mapping
attributes that have to be provided on all loop.parallel. The lowering
does not yet support reduce.
Differential Revision: https://reviews.llvm.org/D73893
This patch adapts the method MemRefDescriptor::fromStaticShape to
support static non-zero offsets. The updated method uses the
getStridesAndOffset method to extract strides and offset. The patch also
adapts the test cases since sizes and strides are now set in forward
instead of reverse order.
Differential Revision: https://reviews.llvm.org/D74474
A memref_cast casting to a memref with a non identity map can't be
lowered to llvm. Take the following case:
```
func @invalid_memref_cast(%arg0: memref<?x?xf64>) {
%c1 = constant 1 : index
%c0 = constant 0 : index
%5 = memref_cast %arg0 : memref<?x?xf64> to memref<?x?xf64, #map1>
%25 = std.subview %5[%c0, %c0][%c1, %c1][] : memref<?x?xf64, #map1> to memref<?x?xf64, #map1>
return
}
```
When lowering the subview mlir was assuming `%5` to have an llvm type
(which is not the case as mlir failed to lower the memref_cast).
Differential Revision: https://reviews.llvm.org/D74466
Thus far we have been using builtin func op to model SPIR-V functions.
It was because builtin func op used to have special treatment in
various parts of the core codebase (e.g., pass pipelines, etc.) and
it's easy to bootstrap the development of the SPIR-V dialect. But
nowadays with general op concepts and region support we don't have
such limitations and it's time to tighten the SPIR-V dialect for
completeness.
This commits introduces a spv.func op to properly model SPIR-V
functions. Compared to builtin func op, it can provide the following
benefits:
* We can control the full op so we can integrate SPIR-V information
bits (e.g., function control) in a more integrated way and define
our own assembly form and enforcing better verification.
* We can have a better dialect and library boundary. At the current
moment only functions are modelled with an external op. With this
change, all ops modelling SPIR-V concpets will be spv.* ops and
registered to the SPIR-V dialect.
* We don't need to special-case func op anymore when creating
ConversionTarget declaring SPIR-V dialect as legal. This is quite
important given we'll see more and more conversions in the future.
In the process, bumps a few FuncOp methods to the FunctionLike trait.
Differential Revision: https://reviews.llvm.org/D74226
Follow-up on D72802. Turn -convert-std-to-llvm-use-alloca and
-convert-std-to-llvm-bare-ptr-memref-call-conv into pass flags
of LLVMLoweringPass.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D73912
We have spv.entry_point_abi for specifying the local workgroup size.
It should be decorated onto input gpu.func ops to drive the SPIR-V
CodeGen to generate the proper SPIR-V module execution mode. Compared
to using command-line options for specifying the configuration, using
attributes also has the benefits that 1) we are now able to use
different local workgroup for different entry points and 2) the
tests contains the configuration directly.
Differential Revision: https://reviews.llvm.org/D74012
The current standard to llvm conversion pass lowers subview ops only if
dynamic offsets are provided. This commit extends the lowering with a
code path that uses the constant offset of the target memref for the
subview op lowering (see Example 3 of the subview op definition for an
example) if no dynamic offsets are provided.
Differential Revision: https://reviews.llvm.org/D74280
The existing (default) calling convention for memrefs in standard-to-LLVM
conversion was motivated by interfacing with LLVM IR produced from C sources.
In particular, it passes a pointer to the memref descriptor structure when
calling the function. Therefore, the descriptor is allocated on stack before
the call. This convention leads to several problems. PR44644 indicates a
problem with stack exhaustion when calling functions with memref-typed
arguments in a loop. Allocating outside of the loop may lead to concurrent
access problems in case the loop is parallel. When targeting GPUs, the contents
of the stack-allocated memory for the descriptor (passed by pointer) needs to
be explicitly copied to the device. Using an aggregate type makes it impossible
to attach pointer-specific argument attributes pertaining to alignment and
aliasing in the LLVM dialect.
Change the default calling convention for memrefs in standard-to-LLVM
conversion to transform a memref into a list of arguments, each of primitive
type, that are comprised in the memref descriptor. This avoids stack allocation
for ranked memrefs (and thus stack exhaustion and potential concurrent access
problems) and simplifies the device function invocation on GPUs.
Provide an option in the standard-to-LLVM conversion to generate auxiliary
wrapper function with the same interface as the previous calling convention,
compatible with LLVM IR porduced from C sources. These auxiliary functions
pack the individual values into a descriptor structure or unpack it. They also
handle descriptor stack allocation if necessary, serving as an allocation
scope: the memory reserved by `alloca` will be freed on exiting the auxiliary
function.
The effect of this change on MLIR-generated only LLVM IR is minimal. When
interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration
only needs to require auxiliary functions and change the function name to call
the wrapper function instead of the original function.
This also opens the door to forwarding aliasing and alignment information from
memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
The existing lowering of gpu.block_dim added a global variable with
the WorkGroupSize decoration. This raises an error within
Vulkan/SPIR-V validation since Vulkan requires this to have a constant
initializer. This is not yet supported in SPIR-V dialect. Changing the
lowering to return the workgroup size as a constant value instead,
obtained from spv.entry_point_abi attribute gets around the issue for
now. The validation goes through since the workgroup size is specified
using spv.execution_mode operation.
Summary:
The `vector.fma` operation is portable enough across targets that we do not want
to keep it wrapped under `vector.outerproduct` and `llvm.intrin.fmuladd`.
This revision lifts the op into the vector dialect and implements the lowering to LLVM by using two patterns:
1. a pattern that lowers from n-D to (n-1)-D by unrolling when n > 2
2. a pattern that converts from 1-D to the proper LLVM representation
Reviewers: ftynse, stellaraccident, aartbik, dcaballe, jsetoain, tetuante
Reviewed By: aartbik
Subscribers: fhahn, dcaballe, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74075
Summary:
This revision exposes the portable `llvm.fma` intrinsic in LLVMOps and uses it
in lieu of `llvm.fmuladd` when lowering the `vector.outerproduct` op to LLVM.
This guarantees proper `fma` instructions will be emitted if the target ISA
supports it.
`llvm.fmuladd` does not have this guarantee in its semantics, despite evidence
that the proper x86 instructions are emitted.
For more details, see https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic.
Reviewers: ftynse, aartbik, dcaballe, fhahn
Reviewed By: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74219
We were using normal dictionary attribute for target environment
specification. It becomes cumbersome with more and more fields.
This commit changes the modelling to a dialect-specific attribute,
where we can have control over its storage and assembly form.
Differential Revision: https://reviews.llvm.org/D73959
This commit adds two resource limits, max_compute_workgroup_size
and max_compute_workgroup_invocations as resource limits to
the target environment. They are not used at the current moment,
but they will affect the SPIR-V CodeGen. Adding for now to have
a proper target environment modelling.
Differential Revision: https://reviews.llvm.org/D73905
Summary:
In the original design, gpu.launch required explicit capture of uses
and passing them as operands to the gpu.launch operation. This was
motivated by infrastructure restrictions rather than design. This
change lifts the requirement and removes the concept of kernel
arguments from gpu.launch. Instead, the kernel outlining
transformation now does the explicit capturing.
This is a breaking change for users of gpu.launch.
Differential Revision: https://reviews.llvm.org/D73769
Summary:
This patch introduces an alternative calling convention for
MemRef function arguments in LLVM dialect. It converts MemRef
function arguments to LLVM bare pointers to the MemRef element
type instead of creating a MemRef descriptor. Bare pointers are
then promoted to a MemRef descriptors at the beginning of the
function. This calling convention is only enabled with a flag.
Reviewers: ftynse, bondhugula, nicolasvasilache, rriddle, mehdi_amini
Reviewed By: ftynse, rriddle, mehdi_amini
Subscribers: Joonsoo, flaub, merge_guards_bot, jholewinski, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72802
Summary:
Rationale:
When lowering to LLVM for different rank insert (n vs k), the offset
arrays needs to drop one dimension (becomes n-1), but the strides
array needs to be preserved (remains k). With regression test.
Note that this example was actually in the documentation, so
extra important to do it right :-)
Reviewers: nicolasvasilache, andydavis1, ftynse
Reviewed By: nicolasvasilache, ftynse
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73733
This commit adds a pattern to lower linalg.generic for reduction
to spv.GroupNonUniform* ops. Right now this only supports integer
reduction on 1-D input memref. Shader entry point ABI is queried
to make sure that the input memref's shape matches the local
workgroup's invocation configuration. This makes sure that the
workload fits in one local workgroup so that we can leverage
SPIR-V group non-uniform operations.
linglg.generic is a structured op that preserves the right level
of information. It is easier to recognize reduction at this level
than performing analysis on loops.
This commit also exposes `getElementPtr` in SPIRVLowering.h given
that it's a generally useful utility function.
Differential Revision: https://reviews.llvm.org/D73437
Summary:
The current code assumes that one always maps at least one loop to block
dimensions and at least one loop to thread dimensions. If either is not
the case, a loop would get mapped twice.
Differential Revision: https://reviews.llvm.org/D73685
Summary:
In the scope of the lowering phase from GPU to ROCDL, the intructions for the conversion patterns seems to be wrong.
According to https://github.com/ROCm-Developer-Tools/HIP/blob/master/include/hip/hcc_detail/math_fwd.h the instructions need two underscores in the beginning instead of one.
Reviewers: nicolasvasilache, herhut, rriddle
Reviewed By: herhut, rriddle
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73535
Summary:
The 'gpu.terminator' operation is used as the terminator for the
regions of gpu.launch. This is to disambugaute them from the
return operation on 'gpu.func' functions.
This is a breaking change and users of the gpu dialect will need
to adapt their code when producting 'gpu.launch' operations.
Reviewers: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73620
Summary:
This also removes the explicit pattern for loop.terminator to ensure
that the terminator is only erased if the parent op is rewritten.
Reductions are not yet supported.
Reviewers: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73348
Summary:
The tanh lowering from Standard dialect to NVVM and ROCDL was not working.
The conversion pattern are inserted in the lowering files.
The test cases for the lowerings were added in the test files.
Reviewers: nicolasvasilache, ftynse, herhut
Reviewed By: ftynse, herhut
Subscribers: merge_guards_bot, ftynse, jholewinski, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73471
Add lowering for constant operation with ranked tensor type to
spv.constant with spv.array type.
Differential Revision: https://reviews.llvm.org/D73022
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reverts "Revert "[mlir] Create a gpu.module operation for the GPU Dialect.""
This reverts commit ac446302ca4145cdc89f377c0c364c29ee303be5 after
fixing internal Google issues.
This additionally updates ROCDL lowering to use the new gpu.module.
Reviewers: herhut, mravishankar, antiagainst, nicolasvasilache
Subscribers: jholewinski, mgorny, mehdi_amini, jpienaar, burmako, shauheen, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits, mravishankar, rriddle, antiagainst, bkramer
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72921
When lowering `loop.if` to `spv.selection` we explicitly create
a selection header block before the control flow diverges and a
merge block where control flow subsequently converges.
Differential Revision: https://reviews.llvm.org/D72836
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
Summary:
This diff implements the progressive lowering of insert_strided_slice.
Two cases appear:
1. when the source and dest vectors have different ranks, extract the dest
subvector at the proper offset and reduce to case 2.
2. when they have the same rank N:
a. if the source and dest type are the same, the insertion is trivial:
just forward the source
b. otherwise, iterate over all N-1 D subvectors and create an
extract/insert_strided_slice/insert replacement, reducing the problem
to vecotrs of the same N-1 rank.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante, nicolasvasilache
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72317
Summary:
This diff implements the progressive lowering of strided_slice to either:
1. extractelement + insertelement for the 1-D case
2. extract + optional strided_slice + insert for the n-D case.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Appropriate tests are added.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72310
This commit fixes shader ABI attributes to use `spv.` as the prefix
so that they match the dialect's namespace. This enables us to add
verification hooks in the SPIR-V dialect to verify them.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D72062
The conversion from std.and/std.or to spv.LogicalAnd/spv.LogicalOr is
only valid for boolean (i1) types. Modify BinaryOpPattern in
StandardToSPIRV.td to allow limiting the type of the operands for
which the pattern is applied.
Differential Revision: https://reviews.llvm.org/D71881
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closestensorflow/mlir#226
PiperOrigin-RevId: 286803388
This will allow us to lower most of gpu.all_reduce (when all_reduce
doesn't exist in the target dialect) within the GPU dialect, and only do
target-specific lowering for the shuffle op.
PiperOrigin-RevId: 286548256
Introduces some centralized methods to move towards
consistent use of i32 as vector subscripts.
Note: sizes/strides/offsets attributes are still i64
PiperOrigin-RevId: 286434133
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
When memory attributions are present in `gpu.func`, require that they are of
memref type and live in memoryspaces 3 and 5 for workgroup and private memory
attributions, respectively. Adapt the conversion from the GPU dialect to the
NVVM dialect to drop the private memory space from attributions as NVVM is able
to model them as local `llvm.alloca`s in the default memory space.
PiperOrigin-RevId: 286161763
This updates the lowering pipelines from the GPU dialect to lower-level
dialects (NVVM, SPIRV) to use the recently introduced gpu.func operation
instead of a standard function annotated with an attribute. In particular, the
kernel outlining is updated to produce gpu.func instead of std.func and the
individual conversions are updated to consume gpu.funcs and disallow standard
funcs after legalization, if necessary. The attribute "gpu.kernel" is preserved
in the generic syntax, but can also be used with the custom syntax on
gpu.funcs. The special kind of function for GPU allows one to use additional
features such as memory attribution.
PiperOrigin-RevId: 285822272
Similar to insert/extract vector instructions but
(1) work on 1-D vectors only
(2) allow for a dynamic index
%c3 = constant 3 : index
%0 = vector.insertelement %arg0, %arg1[%c : index] : vector<4xf32>
%1 = vector.extractelement %arg0[%c3 : index] : vector<4xf32>
PiperOrigin-RevId: 285792205
During the conversion from the standard dialect to the LLVM dialect,
memref-typed arguments are promoted from registers to memory and passed into
functions by pointer. This had been introduced into the lowering to work around
the abesnce of calling convention modeling in MLIR to enable better
interoperability with LLVM IR generated from C, and has been exerciced for
several months. Make this promotion the default calling covention when
converting to the LLVM dialect. This adds the documentation, simplifies the
code and makes the conversion consistent across function operations and
function types used in other places, e.g. in high-order functions or
attributes, which would not follow the same rule previously.
PiperOrigin-RevId: 285751280
This change allows for DialectConversion to attempt folding as a mechanism to legalize illegal operations. This also expands folding support in OpBuilder::createOrFold to generate new constants when folding, and also enables it to work in the context of a PatternRewriter.
PiperOrigin-RevId: 285448440
This type is not used anymore now that Linalg view and subview have graduated to std and that alignment is supported on alloc.
PiperOrigin-RevId: 285213424
Both work for the current use case, but the latter allows implementing
prefix sums and is a little easier to understand for partial warps.
PiperOrigin-RevId: 285145287