Commit Graph

31 Commits

Author SHA1 Message Date
Daniel Sanders 5281b02e84 [globalisel][legalizerinfo] Add support for the Lower action in getActionDefinitionsBuilder() and use it in AArch64.
Lower is slightly odd. It often doesn't change the type but the lowerings
do use the new type to decide what code to create. Treat it like a mutation
but provide convenience functions that re-use the existing type.

Re-uses the existing tests:
test/CodeGen/AArch64/GlobalISel/legalize-rem.mir
test/CodeGen/AArch64/GlobalISel//legalize-mul.mir
test/CodeGen/AArch64/GlobalISel//legalize-cmpxchg-with-success.mir

llvm-svn: 329623
2018-04-09 21:10:09 +00:00
Mandeep Singh Grang e92f0cfe34 [CodeGen] Change std::sort to llvm::sort in response to r327219
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.

To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.

Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.

Reviewers: bogner, rnk, MatzeB, RKSimon

Reviewed By: rnk

Subscribers: JDevlieghere, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D45133

llvm-svn: 329435
2018-04-06 18:08:42 +00:00
Roman Tereshin 2b94972eb9 [GlobalISel][AArch64] Adding -disable-gisel-legality-check CL option
Currently it's impossible to test InstructionSelect pass with MIR which
is considered illegal by the Legalizer in Assert builds. In early stages
of porting an existing backend from SelectionDAG ISel to GlobalISel,
however, we would have very basic CallLowering, Legalizer, and
RegBankSelect implementations, but rather functional Instruction Select
with quite a few patterns selectable due to the semi-automatic porting
process borrowing them from SelectionDAG ISel.

As we are trying to define legality as a property of being selectable by
the instruction selector, it would be nice to be able to easily check
what the selector can do in its current state w/o the legality check
provided by the Legalizer getting in the way.

It also seems beneficial to have a regression testing set up that would
not allow the selector to silently regress in its support of the MIR not
supported yet by the previous passes in the GlobalISel pipeline.

This commit adds -disable-gisel-legality-check command line option to
llc that disables those legality checks in RegBankSelect and
InstructionSelect passes.

It also adds quite a few MIR test cases for AArch64's Instruction
Selector. Every one of them would fail on the legality check at the
moment, but will select just fine if the check is disabled. Every test
MachineFunction is intended to exercise a specific selection rule and
that rule only, encoded in the MachineFunction's name by the rule's
number, ID, and index of its GIM_Try opcode in TableGen'erated
MatchTable (-optimize-match-table=false).

Reviewers: ab, dsanders, qcolombet, rovka

Reviewed By: bogner

Subscribers: kristof.beyls, volkan, aditya_nandakumar, aemerson,
rengolin, t.p.northover, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D42886

llvm-svn: 326396
2018-03-01 00:27:48 +00:00
Daniel Sanders 7fc87360e9 [globalisel][legalizerinfo] Follow up on post-commit review comments after r323681
* Document most API's
* Delete a useless function call
* Fix a discrepancy between the single and multi-opcode variants of
  getActionDefinitions().
  The multi-opcode variant now requires that more than one opcode is requested.
  Previously it acted much like the single-opcode form but unnecessarily
  enforced the requirements of the multi-opcode form.

llvm-svn: 325067
2018-02-13 23:02:44 +00:00
Amara Emerson 4d19655a56 [GlobalISel][Legalizer] Relax a legalization loop detecting assert.
Legalizing vectors may keep the element type the same but change the number of
elements, the assert didn't take this into account.

llvm-svn: 324028
2018-02-01 23:10:57 +00:00
Daniel Sanders 79cb839fcd [globalisel][legalizer] Adapt LegalizerInfo to support inter-type dependencies and other things.
Summary:
As discussed in D42244, we have difficulty describing the legality of some
operations. We're not able to specify relationships between types.
For example, declaring the following
  setAction({..., 0, s32}, Legal)
  setAction({..., 0, s64}, Legal)
  setAction({..., 1, s32}, Legal)
  setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
  {s32, s32}
  {s64, s32}
  {s32, s64}
  {s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES have relationships between the types that are currently
described incorrectly.
    
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).

It's also difficult to control the legalization strategy. We've added support
for legalizing non-power of 2 types but there's still some hardcoded assumptions
about the strategy. The main one I've noticed is that type0 is always legalized
before type1 which is not a good strategy for `type0 = G_EXTRACT type1, ...` if
you need to widen the container. It will converge on the same result eventually
but it will take a much longer route when legalizing type0 than if you legalize
type1 first.

Lastly, the definition of legality and the legalization strategy is kept
separate which is not ideal. It's helpful to be able to look at a one piece of
code and see both what is legal and the method the legalizer will use to make
illegal MIR more legal.

This patch adds a layer onto the LegalizerInfo (to be removed when all targets
have been migrated) which resolves all these issues.

Here are the rules for shift and division:
  for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV})
    getActionDefinitions(BinOp)
        .legalFor({s32, s64})     // If type0 is s32/s64 then it's Legal
        .clampScalar(0, s32, s64) // If type0 is <s32 then WidenScalar to s32
                                  // If type0 is >s64 then NarrowScalar to s64
        .widenScalarToPow2(0)     // Round type0 scalars up to powers of 2
        .unsupported();           // Otherwise, it's unsupported
This describes everything needed to both define legality and describe how to
make illegal things legal.

Here's an example of a complex rule:
  getActionDefinitions(G_INSERT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        // If type0 is smaller than type1 then it's unsupported
        return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
      })
      .legalIf([=](const LegalityQuery &Query) {
        // If type0 is s32/s64/p0 and type1 is a power of 2 other than 2 or 4 then it's legal
        // We don't need to worry about large type1's because unsupportedIf caught that.
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
          return false;
        return isPowerOf2_32(Ty1.getSizeInBits()) &&
               (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
      })
      .clampScalar(0, s32, s64)
      .widenScalarToPow2(0)
      .maxScalarIf(typeInSet(0, {s32}), 1, s16) // If type0 is s32 and type1 is bigger than s16 then NarrowScalar type1 to s16
      .maxScalarIf(typeInSet(0, {s64}), 1, s32) // If type0 is s64 and type1 is bigger than s32 then NarrowScalar type1 to s32
      .widenScalarToPow2(1)                     // Round type1 scalars up to powers of 2
      .unsupported();
This uses a lambda to say that G_INSERT is unsupported when type0 is bigger than
type1 (in practice, this would be a default rule for G_INSERT). It also uses one
to describe the legal cases. This particular predicate is equivalent to:
  .legalFor({{s32, s1}, {s32, s8}, {s32, s16}, {s64, s1}, {s64, s8}, {s64, s16}, {s64, s32}})

In terms of performance, I saw a slight (~6%) performance improvement when
AArch64 was around 30% ported but it's pretty much break even right now.
I'm going to take a look at constexpr as a means to reduce the initialization
cost.

Future work:
* Make it possible for opcodes to share rulesets. There's no need for
  G_LSHR/G_ASHR/G_SDIV/G_UDIV to have separate rule and ruleset objects. There's
  no technical barrier to this, it just hasn't been done yet.
* Replace the type-index numbers with an enum to get .clampScalar(Type0, s32, s64)
* Better names for things like .maxScalarIf() (clampMaxScalar?) and the vector rules.
* Improve initialization cost using constexpr

Possible future work:
* It's possible to make these rulesets change the MIR directly instead of
  returning a description of how to change the MIR. This should remove a little
  overhead caused by parsing the description and routing to the right code, but
  the real motivation is that it removes the need for LegalizeAction::Custom.
  With Custom removed, there's no longer a requirement that Custom legalization
  change the opcode to something that's considered legal.

Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner

Reviewed By: bogner

Subscribers: hintonda, bogner, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D42251

llvm-svn: 323681
2018-01-29 19:54:49 +00:00
Daniel Sanders 9ade5592d9 [globalisel] Make LegalizerInfo::LegalizeAction available outside of LegalizerInfo. NFC
Summary:
The improvements to the LegalizerInfo discussed in D42244 require that
LegalizerInfo::LegalizeAction be available for use in other classes. As such,
it needs to be moved out of LegalizerInfo. This has been done separately to the
next patch to minimize the noise in that patch.

llvm-svn: 323669
2018-01-29 17:37:29 +00:00
Daniel Sanders 262ed0ecd7 [globalisel] Introduce LegalityQuery to better encapsulate the legalizer decisions. NFC.
Summary:
`getAction(const InstrAspect &) const` breaks encapsulation by exposing
the smaller components that are used to decide how to legalize an
instruction.

This is a problem because we need to change the implementation of
LegalizerInfo so that it's able to describe particular type combinations
rather than just cartesian products of types.

For example, declaring the following
  setAction({..., 0, s32}, Legal)
  setAction({..., 0, s64}, Legal)
  setAction({..., 1, s32}, Legal)
  setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
  {s32, s32}
  {s64, s32}
  {s32, s64}
  {s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES has relationships between the types that are currently
described incorrectly.

Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).

This patch introduces LegalityQuery which provides all the information
needed by the legalizer to make a decision on whether something is legal
and how to legalize it.

Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner

Reviewed By: bogner

Subscribers: bogner, llvm-commits, kristof.beyls

Differential Revision: https://reviews.llvm.org/D42244

llvm-svn: 323342
2018-01-24 17:17:46 +00:00
Volkan Keles a32ff00b00 GlobalISel: Enable the legalization of G_MERGE_VALUES and G_UNMERGE_VALUES
Summary: LegalizerInfo assumes all G_MERGE_VALUES and G_UNMERGE_VALUES instructions are legal, so it is not possible to legalize vector operations on illegal vector types. This patch fixes the problem by removing the related check and adding default actions for G_MERGE_VALUES and G_UNMERGE_VALUES.

Reviewers: qcolombet, ab, dsanders, aditya_nandakumar, t.p.northover, kristof.beyls

Reviewed By: dsanders

Subscribers: rovka, javed.absar, igorb, llvm-commits

Differential Revision: https://reviews.llvm.org/D39823

llvm-svn: 319524
2017-12-01 08:19:10 +00:00
David Blaikie b3bde2ea50 Fix a bunch more layering of CodeGen headers that are in Target
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).

llvm-svn: 318490
2017-11-17 01:07:10 +00:00
Kristof Beyls 78aa4b28a3 Mark intentional fall-through with LLVM_FALLTHROUGH.
... to silence gcc 7's default -Wimplicit-fallthrough.

llvm-svn: 317573
2017-11-07 13:31:52 +00:00
Kristof Beyls 178818ba20 Silence C4715 warning from MSVC (NFC).
The warning started triggering after r317560.
This commit silences it in the same way as previously done in a similar
situation, see
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20140915/236088.html

llvm-svn: 317568
2017-11-07 11:54:00 +00:00
Kristof Beyls af9814a1fc [GlobalISel] Enable legalizing non-power-of-2 sized types.
This changes the interface of how targets describe how to legalize, see
the below description.

1. Interface for targets to describe how to legalize.

In GlobalISel, the API in the LegalizerInfo class is the main interface
for targets to specify which types are legal for which operations, and
what to do to turn illegal type/operation combinations into legal ones.

For each operation the type sizes that can be legalized without having
to change the size of the type are specified with a call to setAction.
This isn't different to how GlobalISel worked before. For example, for a
target that supports 32 and 64 bit adds natively:

  for (auto Ty : {s32, s64})
    setAction({G_ADD, 0, s32}, Legal);

or for a target that needs a library call for a 32 bit division:

  setAction({G_SDIV, s32}, Libcall);

The main conceptual change to the LegalizerInfo API, is in specifying
how to legalize the type sizes for which a change of size is needed. For
example, in the above example, how to specify how all types from i1 to
i8388607 (apart from s32 and s64 which are legal) need to be legalized
and expressed in terms of operations on the available legal sizes
(again, i32 and i64 in this case). Before, the implementation only
allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0,
s128}, NarrowScalar).  A worse limitation was that if you'd wanted to
specify how to legalize all the sized types as allowed by the LLVM-IR
LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times
and probably would need a lot of memory to store all of these
specifications.

Instead, the legalization actions that need to change the size of the
type are specified now using a "SizeChangeStrategy".  For example:

   setLegalizeScalarToDifferentSizeStrategy(
       G_ADD, 0, widenToLargerAndNarrowToLargest);

This example indicates that for type sizes for which there is a larger
size that can be legalized towards, do it by Widening the size.
For example, G_ADD on s17 will be legalized by first doing WidenScalar
to make it s32, after which it's legal.
The "NarrowToLargest" indicates what to do if there is no larger size
that can be legalized towards. E.g. G_ADD on s92 will be legalized by
doing NarrowScalar to s64.

Another example, taken from the ARM backend is:
   for (unsigned Op : {G_SDIV, G_UDIV}) {
     setLegalizeScalarToDifferentSizeStrategy(Op, 0,
         widenToLargerTypesUnsupportedOtherwise);
     if (ST.hasDivideInARMMode())
       setAction({Op, s32}, Legal);
     else
       setAction({Op, s32}, Libcall);
   }

For this example, G_SDIV on s8, on a target without a divide
instruction, would be legalized by first doing action (WidenScalar,
s32), followed by (Libcall, s32).

The same principle is also followed for when the number of vector lanes
on vector data types need to be changed, e.g.:

   setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal);
   setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal);
   setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal);
   setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal);
   setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal);
   setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal);
   setLegalizeVectorElementToDifferentSizeStrategy(
       G_ADD, 0, widenToLargerTypesUnsupportedOtherwise);

As currently implemented here, vector types are legalized by first
making the vector element size legal, followed by then making the number
of lanes legal. The strategy to follow in the first step is set by a
call to setLegalizeVectorElementToDifferentSizeStrategy, see example
above.  The strategy followed in the second step
"moreToWiderTypesAndLessToWidest" (see code for its definition),
indicating that vectors are widened to more elements so they map to
natively supported vector widths, or when there isn't a legal wider
vector, split the vector to map it to the widest vector supported.

Therefore, for the above specification, some example legalizations are:
  * getAction({G_ADD, LLT::vector(3, 3)})
    returns {WidenScalar, LLT::vector(3, 8)}
  * getAction({G_ADD, LLT::vector(3, 8)})
    then returns {MoreElements, LLT::vector(8, 8)}
  * getAction({G_ADD, LLT::vector(20, 8)})
    returns {FewerElements, LLT::vector(16, 8)}


2. Key implementation aspects.

How to legalize a specific (operation, type index, size) tuple is
represented by mapping intervals of integers representing a range of
size types to an action to take, e.g.:

       setScalarAction({G_ADD, LLT:scalar(1)},
                       {{1, WidenScalar},  // bit sizes [ 1, 31[
                        {32, Legal},       // bit sizes [32, 33[
                        {33, WidenScalar}, // bit sizes [33, 64[
                        {64, Legal},       // bit sizes [64, 65[
                        {65, NarrowScalar} // bit sizes [65, +inf[
                       });

Please note that most of the code to do the actual lowering of
non-power-of-2 sized types is currently missing, this is just trying to
make it possible for targets to specify what is legal, and how non-legal
types should be legalized.  Probably quite a bit of further work is
needed in the actual legalizing and the other passes in GlobalISel to
support non-power-of-2 sized types.

I hope the documentation in LegalizerInfo.h and the examples provided in the
various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well
enough how this is meant to be used.

This drops the need for LLT::{half,double}...Size().


Differential Revision: https://reviews.llvm.org/D30529

llvm-svn: 317560
2017-11-07 10:34:34 +00:00
Quentin Colombet b1a3bd1529 [LegalizerInfo] Don't evaluate end boundary every time through the loop
Match the LLVM coding standard for loop conditions.

NFC.

llvm-svn: 315757
2017-10-13 21:16:13 +00:00
Quentin Colombet c2f3cea608 [Legalizer] Add support for G_OR NarrowScalar.
Legalize bitwise OR:
 A = BinOp<Ty> B, C
into:
 B1, ..., BN = G_UNMERGE_VALUES B
 C1, ..., CN = G_UNMERGE_VALUES C
 A1 = BinOp<Ty/N> B1, C2
 ...
 AN = BinOp<Ty/N> BN, CN
 A = G_MERGE_VALUES A1, ..., AN

llvm-svn: 314760
2017-10-03 04:53:56 +00:00
Tim Northover ff5e7e1295 GlobalISel: add G_IMPLICIT_DEF instruction.
It looks like there are two target-independent but not GISel instructions that
need legalization, IMPLICIT_DEF and PHI. These are already anomalies since
their operands have important LLTs attached, so to make things more uniform it
seems like a good idea to add generic variants. Starting with G_IMPLICIT_DEF.

llvm-svn: 306875
2017-06-30 20:27:36 +00:00
Kristof Beyls b539ea5393 [GlobalISel] Make multi-step legalization work.
In r301116, a custom lowering needed to be introduced to be able to
legalize 8 and 16-bit divisions on ARM targets without a division
instruction, since 2-step legalization (WidenScalar from 8 bit to 32
bit, then Libcall the 32-bit division) doesn't work.

This fixes this and makes this kind of multi-step legalization, where
first the size of the type needs to be changed and then some action is
needed that doesn't require changing the size of the type,
straighforward to specify.

Differential Revision: https://reviews.llvm.org/D32529

llvm-svn: 306806
2017-06-30 08:26:20 +00:00
Eugene Zelenko 76bf48d932 [CodeGen] Fix some Clang-tidy modernize-use-using and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 306341
2017-06-26 22:44:03 +00:00
Tim Northover c2d5e6d637 AArch64: legalize G_EXTRACT operations.
This is the dual problem to legalizing G_INSERTs so most of the code and
testing was cribbed from there.

llvm-svn: 306328
2017-06-26 20:34:13 +00:00
Tim Northover 4b4eec7009 GlobalISel: remove G_SEQUENCE instruction.
It was trying to do too many things. The basic lumping together of values for
legalization purposes is now handled by G_MERGE_VALUES. More complex things
involving gaps and odd sizes are handled by G_INSERT sequences.

llvm-svn: 306120
2017-06-23 16:15:55 +00:00
Aditya Nandakumar 479ddd20fc [GISel]: Fix undefined behavior while accessing DefaultAction map
We end up dereferencing the end iterator here when the Aspect doesn't exist in the DefaultAction map.
Change the API to return Optional<LLT> and return None when not found.
Also update the callers to handle the None case

llvm-svn: 302963
2017-05-12 22:43:58 +00:00
Aditya Nandakumar fd484c443f [GISel]: Remove unused lambda captures. NFC
https://reviews.llvm.org/D33085

llvm-svn: 302831
2017-05-11 21:56:51 +00:00
Volkan Keles 64ad85f8ba [GlobalISel] LegalizerInfo: Enable legalization of non-power-of-2 types
Summary: Legalize only if the type is marked as Legal or Custom. If not, return Unsupported as LegalizerHelper is not able to handle non-power-of-2 types right now.

Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, kristof.beyls, javed.absar, ab

Reviewed By: kristof.beyls, ab

Subscribers: dberris, rovka, igorb, llvm-commits

Differential Revision: https://reviews.llvm.org/D31711

llvm-svn: 299929
2017-04-11 10:10:14 +00:00
Volkan Keles 5698b2ae6e [GlobalISel] Add default action for G_FNEG
Summary: rL297171 introduced G_FNEG for floating-point negation instruction and IRTranslator started to translate `FSUB -0.0, X` to `FNEG X`. This patch adds a default action for G_FNEG to avoid breaking existing targets.

Reviewers: qcolombet, ab, kristof.beyls, t.p.northover, aditya_nandakumar, dsanders

Reviewed By: qcolombet

Subscribers: dberris, rovka, llvm-commits

Differential Revision: https://reviews.llvm.org/D30721

llvm-svn: 297301
2017-03-08 18:09:14 +00:00
Tim Northover bf017293af GlobalISel: add merge/unmerge nodes for legalization.
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.

I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.

llvm-svn: 296921
2017-03-03 22:46:09 +00:00
Tim Northover 9136617a3f GlobalISel: legalize va_arg on AArch64.
Uses a Custom implementation because the slot sizes being a multiple of the
pointer size isn't really universal, even for the architectures that do have a
simple "void *" va_list.

llvm-svn: 295255
2017-02-15 23:22:50 +00:00
Tim Northover 0e6afbdd77 GlobalISel: legalize G_INSERT instructions
We don't handle all cases yet (see arm64-fallback.ll for an example), but this
is enough to cover most common C++ code so it's a good place to start.

llvm-svn: 294247
2017-02-06 21:56:47 +00:00
Tim Northover 0a683e7bfd GlobalISel: fall back gracefully when we hit unhandled legalizer default.
llvm-svn: 288840
2016-12-06 19:02:15 +00:00
Tim Northover 405e25cd6a GlobalISel: stop the legalizer from trying to handle oddly-sized types.
It'll almost immediately fail because it always tries to half/double the size
until it finds a legal one. Unfortunately, this triggers an assertion
preventing the DAG fallback from being possible.

llvm-svn: 288834
2016-12-06 18:38:29 +00:00
Tim Northover cdf23f1d93 GlobalISel: translate stack protector intrinsics
llvm-svn: 285614
2016-10-31 18:30:59 +00:00
Tim Northover 69fa84a6e9 GlobalISel: rename legalizer components to match others.
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.

The only functional change is the name of a couple of command-line options.

llvm-svn: 284287
2016-10-14 22:18:18 +00:00