While it's not entirely clear why a compiler or linker might
put this information into an object or PDB file, one has been
spotted in the wild which was causing llvm-pdbdump to crash.
This patch adds support for reading-writing these sections.
Since I don't know how to get one of the native tools to
generate this kind of debug info, the only test here is one
in which we feed YAML into the tool to produce a PDB and
then spit out YAML from the resulting PDB and make sure that
it matches.
llvm-svn: 304738
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
llvm-svn: 304623
Previously we would expect certain subsections to appear
in a certain order because some subsections would reference
other subsections, but in practice we need to support
arbitrary orderings since some object file and PDB file
producers generate them this way. This also paves the
way for supporting Yaml <-> Object File conversion of
CodeView, since Object Files typically have quite a
large number of subsections in their debug info.
Differential Revision: https://reviews.llvm.org/D33807
llvm-svn: 304588
Object files have symbol records not aligned to any particular
boundary (e.g. 1-byte aligned), while PDB files have symbol
records padded to 4-byte aligned boundaries. Since they share
the same reading / writing code, we have to provide an option to
specify the alignment and propagate it up to the producer or
consumer who knows what the alignment is supposed to be for the
given container type.
Added a test for this by modifying the existing PDB -> YAML -> PDB
round-tripping code to round trip symbol records as well as types.
Differential Revision: https://reviews.llvm.org/D33785
llvm-svn: 304484
The code was a mess and disorganized due to the sheer amount
of it being in one file. So I'm splitting this into three files.
One for CodeView types, one for CodeView symbols, and one for
CodeView debug subsections. NFC.
llvm-svn: 304278
CodeViewYAML.h attempts to hide the details of many of the
CodeView yaml structures and types, but at the same time it
exposes the mapping traits for them to external users of the
header.
This patch just hides these in the implementation files so that
the interface is kept as simple as possible.
llvm-svn: 304263
This continues the effort to get the CodeView YAML parsing logic
into ObjectYAML. After this patch, the only missing piece will
be the CodeView debug symbol subsections.
llvm-svn: 304256
This is the beginning of an effort to move the codeview yaml
reader / writer into ObjectYAML so that it can be shared.
Currently the only consumer / producer of CodeView YAML is
llvm-pdbdump, but CodeView can exist outside of PDB files, and
indeed is put into object files and passed to the linker to
produce PDB files. Furthermore, there are subtle differences
in the types of records that show up in object file CodeView
vs PDB file CodeView, but they are otherwise 99% the same.
By having this code in ObjectYAML, we can have llvm-pdbdump
reuse this code, while teaching obj2yaml and yaml2obj to use
this syntax for dealing with object files that can contain
CodeView.
This patch only adds support for CodeView type information
to ObjectYAML. Subsequent patches will add support for
CodeView symbol information.
llvm-svn: 304248
We have a lot of complicated logic to determine where padding
is in a record, and the debug info doesn't always provide enough
information to figure it out with laser precision. In this case
we were putting the padding in the wrong place causing an
out of bounds access on a BitVector.
Right now we decide that any trailing padding of a child type
will be truncated during record layout, but this is only true
insofar as the class still is sized properly to end on an
alignment boundary, which the algorithm doesn't yet know about.
For now, just don't crash, even though we display padding twice
in this case.
llvm-svn: 303946
Summary:
Previously, the yaml2pdb subcommand of llvm-pdbdump only
included object file names in module info if a module info stream was
present. This change makes it so that we include the object file name
even if there is no module info stream for the module. As a result,
running
llvm-pdbdump pdb2yaml -dbi-module-info original.pdb > original.yaml &&
llvm-pdbdump yaml2pdb -pdb=new.pdb original.yaml && llvm-pdbdump
pdb2yaml -dbi-module-info new.pdb > new.yaml now produces identical
original.yaml and new.yaml files.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33463
llvm-svn: 303891
Summary:
First, StringMap uses llvm::HashString, which is only good for short
identifiers and really bad for large blobs of binary data like type
records. Moving to `DenseMap<StringRef, TypeIndex>` with some tricks for
memory allocation fixes that.
Unfortunately, that didn't buy very much performance. Profiling showed
that we spend a long time during DenseMap growth rehashing existing
entries. Also, in general, DenseMap is faster when the keys are small.
This change takes that to the logical conclusion by introducing a small
wrapper value type around a pointer to key data. The key data contains a
precomputed hash, the original record data (pointer and size), and the
type index, which is the "value" of our original map.
This reduces the time to produce llvm-as.exe and llvm-as.pdb from ~15s
on my machine to 3.5s, which is about a 4x improvement.
Reviewers: zturner, inglorion, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33428
llvm-svn: 303665
Previous algotirhm assumed that types and ids are in a single
unified stream. For inputs that come from object files, this
is the case. But if the input is already a PDB, or is the result
of a previous merge, then the types and ids will already have
been split up, in which case we need an algorithm that can
accept operate on independent streams of types and ids that
refer across stream boundaries to each other.
Differential Revision: https://reviews.llvm.org/D33417
llvm-svn: 303577
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Merging PDBs is a feature that will be used heavily by
the linker. The functionality already exists but does not
have deep test coverage because it's not easily exposed through
any tools. This patch aims to address that by adding the
ability to merge PDBs via llvm-pdbdump. It takes arbitrarily
many PDBs and outputs a single PDB.
Using this new functionality, a test is added for merging
type records. Future patches will add the ability to merge
symbol records, module information, etc.
llvm-svn: 303389
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
Summary:
llvm-pdbdump yaml2pdb used to fail with a misleading error
message ("An I/O error occurred on the file system") if no output file
was specified. This change adds an assert to PDBFileBuilder to check
that an output file name is specified, and makes llvm-pdbdump generate
an output file name based on the input file name if no output file
name is explicitly specified.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33296
llvm-svn: 303299
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
This adds a visitor that is capable of accessing type
records randomly and caching intermediate results that it
learns about during partial linear scans. This yields
amortized O(1) access to a type stream even though type
streams cannot normally be indexed.
Differential Revision: https://reviews.llvm.org/D33009
llvm-svn: 302936
Most of the time we know exactly how many type records we
have in a list, and we want to use the visitor to deserialize
them into actual records in a database. Previously we were
just using push_back() every time without reserving the space
up front in the vector. This is obviously terrible from a
performance standpoint, and it's not uncommon to have PDB
files with half a million type records, where the performance
degredation was quite noticeable.
llvm-svn: 302302
Verifying the hash values as we are currently doing
results in iterating every type record before the user
even tries to access the first one, and the API user
has no control over, or ability to hook into this
process.
As a result, when the user wants to iterate over types
to print them or index them, this results in a second
iteration over the same list of types. When there's
upwards of 1,000,000 type records, this is obviously
quite undesirable.
This patch raises the verification outside of TpiStream
, and llvm-pdbdump hooks a hash verification visitor
into the normal dumping process. So we still verify
the hash records, but we can do it while not requiring
a second iteration over the type stream.
Differential Revision: https://reviews.llvm.org/D32873
llvm-svn: 302206
I tried to run llvm-pdbdump on a very large (~1.5GB) PDB to
try and identify show-stopping performance problems. This
patch addresses the first such problem.
When loading the DBI stream, before anyone has even tried to
access a single record, we build an in memory map of every
source file for every module. In the particular PDB I was
using, this was over 85 million files. Specifically, the
complexity is O(m*n) where m is the number of modules and
n is the average number of source files (including headers)
per module.
The whole reason for doing this was so that we could have
constant time access to any module and any of its source
file lists. However, we can still get O(1) access to the
source file list for a given module with a simple O(m)
precomputation, and access to the list of modules is
already O(1) anyway.
So this patches reduces the O(m*n) up-front precomputation
to an O(m) one, where n is ~6,500 and n*m is about 85 million
in my pathological test case.
Differential Revision: https://reviews.llvm.org/D32870
llvm-svn: 302205
Building the type database is expensive, and can take multiple
minutes for large PDBs. But we only need it in certain cases
depending on what command line options are specified. So only
build it when we know we're about to need it.
llvm-svn: 302204
The raw CodeView format references strings by "offsets", but it's
confusing what table the offset refers to. In the case of line
number information, it's an offset into a buffer of records,
and an indirection is required to get another offset into a
different table to find the final string. And in the case of
checksum information, there is no indirection, and the offset
refers directly to the location of the string in another buffer.
This would be less confusing if we always just referred to the
strings by their value, and have the library be smart enough
to correctly resolve the offsets on its own from the right
location.
This patch makes that possible. When either reading or writing,
all the user deals with are strings, and the library does the
appropriate translations behind the scenes.
llvm-svn: 302053
llvm-readobj hand rolls some CodeView parsing code for string
tables, so this patch updates it to re-use some of the newly
introduced parsing code in LLVMDebugInfoCodeView.
Differential Revision: https://reviews.llvm.org/D32772
llvm-svn: 302052
With the forthcoming codeview::StringTable which a pdb::StringTable
would hold an instance of as one member, this ambiguity becomes
confusing. Rename to PDBStringTable to avoid this.
llvm-svn: 301948
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
In preparation for introducing writing capabilities for each of
these classes, I would like to adopt a Foo / FooRef naming
convention, where Foo indicates that the class can manipulate and
serialize Foos, and FooRef indicates that it is an immutable view of
an existing Foo. In other words, Foo is a writer and FooRef is a
reader. This patch names some existing readers to conform to the
FooRef convention, while offering no functional change.
llvm-svn: 301810
There is a lot of duplicate code for printing line info between
YAML and the raw output printer. This introduces a base class
that can be shared between the two, and makes some minor
cleanups in the process.
llvm-svn: 301728
When dumping raw data from a stream, you might know the offset
of a certain record you're interested in, as well as how long
that record is. Previously, you had to dump the entire stream
and wade through the bytes to find the interesting record.
This patch allows you to specify an offset and length on the
command line, and it will only dump the requested range.
llvm-svn: 301607
Reviewers: zturner, hansw, hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: https://reviews.llvm.org/D32611
llvm-svn: 301595
Previously parsing of these were all grouped together into a
single master class that could parse any type of debug info
fragment.
With writing forthcoming, the complexity of each individual
fragment is enough to warrant them having their own classes so
that reading and writing of each fragment type can be grouped
together, but isolated from the code for reading and writing
other fragment types.
In doing so, I found a place where parsing code was duplicated
for the FileChecksums fragment, across llvm-readobj and the
CodeView library, and one of the implementations had a bug.
Now that the codepaths are merged, the bug is resolved.
Differential Revision: https://reviews.llvm.org/D32547
llvm-svn: 301557
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
We were already parsing and dumping this to the human readable
format, but not to the YAML format. This does so, in preparation
for reading it in and reconstructing the line information from
YAML.
llvm-svn: 301357
The *real* difference between these two was that
a) The "graphical" dumper could recurse, while the text one could
not.
b) The "text" dumper could display nested types and functions,
while the graphical one could not.
Merge these two so that there is only one dumper that can recurse
arbitrarily deep and optionally display nested types or not.
llvm-svn: 301204
This reworks the way virtual bases are handled, and also the way
padding is detected across multiple levels of aggregates, producing
a much more accurate result.
llvm-svn: 301203