uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
common LexStringLiteral function. In doing so, some consistency problems have
been ironed out (e.g. where the first token in the string literal was lexed
with macro expansion, but subsequent ones were not) and also an erroneous
diagnostic has been corrected.
LexStringLiteral is complemented by a FinishLexStringLiteral function which
can be used in the situation where the first token of the string literal has
already been lexed.
llvm-svn: 168266
the related comma pasting extension.
In certain cases, we used to get two diagnostics for what is essentially one
extension. This change suppresses the first diagnostic in certain cases
where we know we're going to print the second diagnostic. The
diagnostic is redundant, and it can't be suppressed in the definition
of the macro because it points at the use of the macro, so we want to
avoid printing it if possible.
The implementation works by detecting constructs which look like comma
pasting at the time of the definition of the macro; this information
is then used when the macro is used. (We can't actually detect
whether we're using the comma pasting extension until the macro is
actually used, but we can detecting constructs which will be comma
pasting if the varargs argument is elided.)
<rdar://problem/12292192>
llvm-svn: 167907
macro history.
When deserializing macro history, we arrange history such that the
macros that have definitions (that haven't been #undef'd) and are
visible come at the beginning of the list, which is what the
preprocessor and other clients of Preprocessor::getMacroInfo()
expect. If additional macro definitions become visible later, they'll
be moved toward the front of the list. Note that it's possible to have
ambiguities, but we don't diagnose them yet.
There is a partially-implemented design decision here that, if a
particular identifier has been defined or #undef'd within the
translation unit, that definition (or #undef) hides any macro
definitions that come from imported modules. There's still a little
work to do to ensure that the right #undef'ing happens.
Additionally, we'll need to scope the update records for #undefs, so
they only kick in when the submodule containing that update record
becomes visible.
llvm-svn: 165682
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
specific module (__building_module(modulename)) and to get the name of
the current module as an identifier (__MODULE__).
Used to help headers behave differently when they're being included as
part of building a module. Oh, the irony.
llvm-svn: 164605
(__is_pod, __is_signed, etc.) to normal identifiers if they are
encountered in certain places in the grammar where we know that prior
versions of libstdc++ or libc++ use them, to still allow the use of
these keywords as type traits. Fixes <rdar://problem/9836262> and PR10184.
llvm-svn: 162937
within its own argument list. The original definition is used for the immediate
expansion, but the new definition is used for any subsequent occurences within
the argument list or after the expansion.
llvm-svn: 162906
Summary:
The problem was with the following sequence:
#pragma push_macro("long")
#undef long
#pragma pop_macro("long")
in case when "long" didn't represent a macro.
Fixed crash and removed code duplication for #undef/pop_macro case. Added regression tests.
Reviewers: doug.gregor, klimek
Reviewed By: doug.gregor
CC: cfe-commits, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D31
llvm-svn: 162845
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
This tests for the ability to include a "message" field in availability
attributes, like so:
extern void ATSFontGetName(const char *oName)
__attribute__((availability(macosx,introduced=8.0,deprecated=9.0,
message="use CTFontCopyFullName")));
This was actually supported in Clang 3.1, but we got a request for a
__has_feature so that header files can use this more safely. It's
unfortunate that the 3.1 release doesn't include this, however.
<rdar://problem/11886458>
llvm-svn: 160699
places. I've turned this off for the GNU runtimes --- I don't know if
they support weak class import, but it's easy enough for them to opt in.
Also tweak a comment per review by Jordan.
llvm-svn: 158860
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
The original r158700 caused crashes in the gcc test suite,
g++.abi/vtable3a.C among others. It also caused failures in the libc++
test suite.
llvm-svn: 158749
Note that this is mostly a structural patch that handles the change from the old
spelling style to the new one. One consequence of this is that all AT_foo_bar
enum values have changed to not be based off of the first spelling, but rather
off of the class name, so they are now AT_FooBar and the like (a straw poll on
IRC showed support for this). Apologies for code churn.
Most attributes have GNU spellings as a temporary solution until everything else
is sorted out (such as a Keyword spelling, which I intend to add if someone else
doesn't beat me to it). This is definitely a WIP.
I've also killed BaseCheckAttr since it was unused, and I had to go through
every attribute anyway.
llvm-svn: 158700
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
__has_builtin
in an empty file, as we were overwriting the EOF token. Overwriting an arbitrary token
never seems like a good idea in the error case. This fixes a bug reported on the GCC
list :)
llvm-svn: 149397
when it actually has changed (and not, e.g., when we've simply attached a
deserialized macro definition). Good for ~1.5% reduction in module
file size, mostly in the identifier table.
llvm-svn: 148808
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
any language variant), and restrict __has_feature(objc_modules) to
mean that we also have the Objective-C @import syntax. I anticipate
__has_feature(cxx_modules) and/or __has_feature(c_modules) for when we
nail down the module syntax for C/C++.
llvm-svn: 147548
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
This also adds a -Wc++98-compat-pedantic for warning on constructs which would
be diagnosed by -std=c++98 -pedantic (that is, it warns even on C++11 features
which we enable by default, with no warning, in C++98 mode).
llvm-svn: 142034
'id' that can be used (only!) via a contextual keyword as the result
type of an Objective-C message send. 'instancetype' then gives the
method a related result type, which we have already been inferring for
a variety of methods (new, alloc, init, self, retain). Addresses
<rdar://problem/9267640>.
llvm-svn: 139275
Previously we would cut off the source file buffer at the code-completion
point; this impeded code-completion inside C++ inline methods and,
recently, with buffering ObjC methods.
Have the code-completion inserted into the source buffer so that it can
be buffered along with a method body. When we actually hit the code-completion
point the cut-off lexing or parsing.
Fixes rdar://10056932&8319466
llvm-svn: 139086
variants to 'expand'. This changed a couple of public APIs, including
one public type "MacroInstantiation" which is now "MacroExpansion". The
rest of the codebase was updated to reflect this, especially the
libclang code. Two of the C++ (and thus easily changed) libclang APIs
were updated as well because they pertained directly to the old
MacroInstantiation class.
No functionality changed.
llvm-svn: 135139
structure to hold inferred information, then propagate each invididual
bit down to -cc1. Separate the bits of "supports weak" and "has a native
ARC runtime"; make the latter a CodeGenOption.
The tool chain is still driving this decision, because it's the place that
has the required deployment target information on Darwin, but at least it's
better-factored now.
llvm-svn: 134453
Previously macro expanded tokens were added to Preprocessor's bump allocator and never released,
even after the TokenLexer that were lexing them was finished, thus they were wasting memory.
A very "useful" boost library was causing clang to eat 1 GB just for the expanded macro tokens.
Introduce a special cache that works like a stack; a TokenLexer can add the macro expanded tokens
in the cache, and when it finishes, the tokens are removed from the end of the cache.
Now consumed memory by expanded tokens for that library is ~ 1.5 MB.
Part of rdar://9327049.
llvm-svn: 134105
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
minor issues along the way:
- Non-type template parameters of type 'std::nullptr_t' were not
permitted.
- We didn't properly introduce built-in operators for nullptr ==,
!=, <, <=, >=, or > as candidate functions .
To my knowledge, there's only one (minor but annoying) part of nullptr
that hasn't been implemented: catching a thrown 'nullptr' as a pointer
or pointer-to-member, per C++0x [except.handle]p4.
llvm-svn: 131813
__has_extension is a function-like macro which takes the same set
of feature identifiers as __has_feature. It evaluates to 1 if the
feature is supported by Clang in the current language (either as a
language extension or a standard language feature) or 0 if not.
At the same time, add support for the C1X feature identifiers
c_generic_selections (renamed from generic_selections) and
c_static_assert, and document them.
Patch by myself and Jean-Daniel Dupas.
llvm-svn: 131308
As far as I know, this implementation is complete but might be missing a
few optimizations. Exceptions and virtual bases are handled correctly.
Because I'm an optimist, the web page has appropriately been updated. If
I'm wrong, feel free to downgrade its support categories.
llvm-svn: 130642
includes get resolved, especially when they are found relatively to
another include file. We also try to get it working for framework
includes, but that part of the code is untested, as I don't have a code
base that uses it.
llvm-svn: 130246
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057
clients to observe the exact path through which an #included file was
located. This is very useful when trying to record and replay inclusion
operations without it beind influenced by the aggressive caching done
inside the FileManager to avoid redundant system calls and filesystem
operations.
The work to compute and return this is only done in the presence of
callbacks, so it should have no effect on normal compilation.
Patch by Manuel Klimek.
llvm-svn: 127742
Find out that our C++0x status has only one field for noexcept expression and specification together, and that it was accidentally already marked as fully implemented.
This completes noexcept specification work.
llvm-svn: 127701
of an Objective-C method to be overridden on a case-by-case basis. This
is a higher-level tool than ns_returns_retained &c.; it lets users specify
that not only does a method have different retain/release semantics, but
that it semantically acts differently than one might assume from its name.
This in turn is quite useful to static analysis.
llvm-svn: 126839
The previous name was inaccurate as this token in fact appears at
the end of every preprocessing directive, not just macro definitions.
No functionality change, except for a diagnostic tweak.
llvm-svn: 126631
- Don't publicize a C++0x feature through __has_feature if we aren't
in C++0x mode (even if the feature is available only with a
warning).
- "auto" is not implemented well enough for its __has_feature to be
turned on.
- Fix the test of C++0x __has_feature to actually test what we're
trying to test. Searching for the substring "foo" when our options
are "foo" and "no_foo" doesn't work :)
llvm-svn: 124291
and turn on __has_feature(cxx_rvalue_references). The core rvalue
references proposal seems to be fully implemented now, pending lots
more testing.
llvm-svn: 124169
Turn on the __has_feature switch for variadic templates, document
their completion, and put the ExtWarn into the c++0x-extensions
warning group.
llvm-svn: 123854
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.
Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.
Fixes rdar://8365684.
llvm-svn: 121873
and use a better and more general approach, where NullStmt has a flag to indicate whether it was preceded by an empty macro.
Thanks to Abramo Bagnara for the hint!
llvm-svn: 119887
load identifiers without loading their corresponding macro
definitions. This is likely to improve PCH performance slightly, and
reduces deserialization stack depth considerably when using
preprocessor metaprogramming.
llvm-svn: 117750
inclusion directives, keeping track of every #include, #import,
etc. in the translation unit. We keep track of the source location and
kind of the inclusion, how the file name was spelled, and the
underlying file to which the inclusion resolved.
llvm-svn: 116952
disabled with the intent that users can start with them now and not have to change
a thing to have them work when we implement the features.
llvm-svn: 93312
builtin preprocessor macro. This appears to work with two caveats:
1) builtins are registered in -E mode, and 2) target-specific builtins
are unconditionally registered even if they aren't supported by the
target (e.g. SSE4 builtin when only SSE1 is enabled).
llvm-svn: 73289
two empty arguments. Also, add an assert so that this bug
manifests as an assertion failure, not a valgrind problem.
This fixes rdar://6880648 - [cpp] crash in ArgNeedsPreexpansion
llvm-svn: 71616
Highlights: PP::isNextPPTokenLParen() no longer eats the (
when present. We now simplify slightly the logic parsing
macro arguments. We now handle PR3937 and other related cases
correctly.
llvm-svn: 69411
terminated with an EOF token. The condition it is trying to check for is
handled by this code above.
// Empty arguments are standard in C99 and supported as an extension in
// other modes.
if (ArgTokens.empty() && !Features.C99)
Diag(Tok, diag::ext_empty_fnmacro_arg);
llvm-svn: 67705
*end* of a macro instantiation, not the start of it. This is
really all about bug-for-bug compatibility with GCC, but not
doing this breaks the FreeBSD kernel.
llvm-svn: 64604
Now instead of just tracking the expansion history, also track the full
range of the macro that got replaced. For object-like macros, this doesn't
change anything. For _Pragma and function-like macros, this means we track
the locations of the ')'.
This is required for PR3579 because apparently GCC uses the line of the ')'
of a function-like macro as the location to expand __LINE__ to.
llvm-svn: 64601
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
as reported to the user and as manipulated by #line. This is what __FILE__,
__INCLUDE_LEVEL__, diagnostics and other things should follow (but not
dependency generation!).
This patch also includes several cleanups along the way:
- SourceLocation now has a dump method, and several other places
that did similar things now use it.
- I cleaned up some code in AnalysisConsumer, but it should probably be
simplified further now that NamedDecl is better.
- TextDiagnosticPrinter is now simplified and cleaned up a bit.
This patch is a prerequisite for #line, but does not actually provide
any #line functionality.
llvm-svn: 63098
instantiation history in an effort to speed up c99-intconst-1.c.
Now that multiple nested instantiations are allowed, we just
make them and don't pay the cost of lookups. With the other
changes that went in before this, reverting this is actually
a speedup for c99-intconst-1.c, speeding it up from 1.96s to 1.80s,
and preserves much better loc info.
llvm-svn: 63036
Token now has a class of kinds for "literals", which include
numeric constants, strings, etc. These tokens can optionally have
a pointer to the start of the token in the lexer buffer. This
makes it faster to get spelling and do other gymnastics, because we
don't have to go through source locations.
This change is performance neutral, but will make other changes
more feasible down the road.
llvm-svn: 63028
This reduces fsyntax-only time on c99-intconst-1.c from 2.43s down to
2.01s (20%), reducing the number of fileid lookups from 2529040 linear
and 64771121 binary to 5625902 linear and 4151182 binary.
This knocks getFileID down to only 4.6% of compile time on this testcase.
At this point, malloc/free is over 35% of compile time, primarily allocating
MacroArgs objects and their argument preexpansion vectors.
I don't feel like malloc avoiding right now, so I'm just going to call
this good.
llvm-svn: 62994
of a macro. Since these tokens may themselves be from macro
expansions, we need to resolve down to the spelling loc when the
macro ends up being instantiated. Instead of resolving this for
each token expanded from the macro definition, just do it once when
the macro is defined. This speeds up clang on c99-intconst-1.c from
2.66s to 2.43s (9.5%), reducing the FileID lookups from 407244 linear and
114175649 binary to 2529040 linear and 64771121 binary.
llvm-svn: 62993
ground work for implementing #line, and fixes the "out of macro ID's"
problem.
There is nothing particularly tricky about the code, other than the
very performance sensitive SourceManager::getFileID() method.
llvm-svn: 62978
NumericLiteral parser is not careful about overrun because
it should never be possible. It implicitly expects that its
input matched the regex for pp-constant. Because of this, it
knows it can't be pointing to a prefix of something that
looks like a number. This is all fine, except that __LINE__
does not prevent implicit concatenation from happening. Fix
__LINE__ to not do this.
llvm-svn: 56818
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402