I fixed my miscompile in r301722 and I hope I don't have to take
a look at this code again now that Chandler has a new LoopUnswitch
pass, but maybe this could be of use for somebody else in the
meanwhile.
llvm-svn: 301723
While debugging a miscompile I realized loopunswitch doesn't
put newlines when printing the instruction being replacement.
Ending up with a single line with many instruction replaced isn't
the best for readability and/or mental sanity.
llvm-svn: 301692
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
llvm-svn: 301424
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
Loop unswitching can be extremely harmful for a SIMT target. In case
if hoisted condition is not uniform a SIMT machine will execute both
clones of a loop sequentially. Therefor LoopUnswitch checks if the
condition is non-divergent.
Since DivergenceAnalysis adds an expensive PostDominatorTree analysis
not needed for non-SIMT targets a new option is added to avoid unneded
analysis initialization. The method getAnalysisUsage is called when
TargetTransformInfo is not yet available and we cannot use it here.
For that reason a new field DivergentTarget is added to PassManagerBuilder
to control the behavior and set this field from a target.
Differential Revision: https://reviews.llvm.org/D30796
llvm-svn: 298104
LoopUnswitch/simplify-with-nonvalness.ll is the test case for this.
The LIC has 2 users and deleting the 1st user when it can be simplified
invalidated the iterator for the 2nd user.
llvm-svn: 296069
Summary: In case we do not know what the condition is in an unswitched loop, but we know its definitely NOT a known constant. We can perform simplifcations based on this information.
Reviewers: sanjoy, hfinkel, chenli, efriedma
Reviewed By: efriedma
Subscribers: david2050, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28968
llvm-svn: 296041
Chandler mentioned at the last social that the need for BFI in the new pass manager was causing a slight hiccup for this pass. Given this code has been checked in, but off for over a year, it makes sense to just remove it for now.
Note that there's nothing wrong with the general idea - it's actually a quite good one - and once we have the infrastructure in place to implement this without the full recompuation on every loop, we absolutely should.
llvm-svn: 294715
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
Summary:
The iterative algorithm for Loop Unswitching may render some of the branches unreachable in the unswitched loops.
Given the exponential nature of the algorithm, this is quite an overhead.
This patch fixes this problem by selectively unswitching only those branches within a loop that are reachable from the loop header.
Reviewers: Michael Zolothukin, Anna Thomas, Weiming Zhao.
Subscribers: llvm-commits.
Differential Revision: http://reviews.llvm.org/D26299
llvm-svn: 287925
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
Summary:
This is a straightforward extension of what LoopUnswitch does to
branches to guards. That is, we unswitch
```
for (;;) {
...
guard(loop_invariant_cond);
...
}
```
into
```
if (loop_invariant_cond) {
for (;;) {
...
// There is no need to emit guard(true)
...
}
} else {
for (;;) {
...
guard(false);
// SimplifyCFG will clean this up by adding an
// unreachable after the guard(false)
...
}
}
```
Reviewers: majnemer
Subscribers: mcrosier, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D21725
llvm-svn: 273801
Loop unswitching may cause MSan false positive when the unswitch
condition is not guaranteed to execute.
This is very similar to ASan and TSan special case in
llvm::isSafeToSpeculativelyExecute (they don't like speculative loads
and stores), but for branch instructions.
This is a workaround for PR28054.
llvm-svn: 272421
We were overly cautious in our analysis of loops which have invokes
which unwind to EH pads. The loop unroll transform is safe because it
only clones blocks in the loop body, it does not try to split critical
edges involving EH pads. Instead, move the necessary safety check to
LoopUnswitch.
N.B. The safety check for loop unswitch is covered by an existing test
which fails without it.
llvm-svn: 268357
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Clarify what this RemapFlag actually means.
- Change the flag name to match its intended behaviour.
- Clearly document that it's not supposed to affect globals.
- Add a host of FIXMEs to indicate how to fix the behaviour to match
the intent of the flag.
RF_IgnoreMissingLocals should only affect the behaviour of
RemapInstruction for function-local operands; namely, for operands of
type Argument, Instruction, and BasicBlock. Currently, it is *only*
passed into RemapInstruction calls (and the transitive MapValue calls
that it makes).
When I split Metadata from Value I didn't understand the flag, and I
used it in a bunch of places for "global" metadata.
This commit doesn't have any functionality change, but prepares to
cleanup MapMetadata and MapValue.
llvm-svn: 265628
routine.
We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.
The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.
With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.
I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.
LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.
Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.
Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!
Differential Revision: http://reviews.llvm.org/D17435
llvm-svn: 261316
The insertLoop() API is only used to add new loops, and has confusing
ownership semantics. Simplify it by replacing it with addLoop().
llvm-svn: 251064
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
Doing so could cause the post-unswitching convergent ops to be
control-dependent on the unswitch condition where they were not before.
This check could be refined to allow unswitching where the convergent
operation was already control-dependent on the unswitch condition.
llvm-svn: 249874
Summary: This patch adds block frequency analysis to LoopUnswitch pass to recognize hot/cold regions. For cold regions the pass only performs trivial unswitches since they do not increase code size, and for hot regions everything works as before. This helps to minimize code growth in cold regions and be more aggressive in hot regions. Currently the default cold regions are blocks with frequencies below 20% of function entry frequency, and it can be adjusted via -loop-unswitch-cold-block-frequency flag. The entire feature is controlled via -loop-unswitch-with-block-frequency flag and it is off by default.
Reviewers: broune, silvas, dnovillo, reames
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D11605
llvm-svn: 248777
Summary:
We should either require the DT info to be available, or check if it's
available in every place we use DT (and we already miss such check in
one place, which causes failures in some cases). As other loop passes
preserve DT and it's usually available, it makes sense to just require
it here.
There is no regression test, because the bug only shows up if pass
manager decides to clean DT info right before LoopUnswitch. If
loop-unswitch is run separately, DT is available, so bug isn't exposed.
Reviewers: chandlerc, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13036
llvm-svn: 248230
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.
llvm-svn: 247263
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
Summary: This patch moves the check of OptimizeForSize before traversing over all basic blocks in current loop. If OptimizeForSize is set to true, no non-trivial unswitch is ever allowed. Therefore, the early exit will help reduce compilation time. This patch should be NFC.
Reviewers: reames, weimingz, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11997
llvm-svn: 244868
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994