Commit Graph

312 Commits

Author SHA1 Message Date
Philip Pfaffe e8f3ae9da0 [Plugins] Add a slim plugin API to work together with the new PM
Summary:
Add a new plugin API. This closes the gap between pass registration and out-of-tree passes for the new PassManager.

Unlike with the existing API, interaction with a plugin is always
initiated from the tools perspective. I.e., when a plugin is loaded, it
resolves and calls a well-known symbol `llvmGetPassPluginInfo` to obtain
details about the plugin. The fundamental motivation is to get rid of as
many global constructors as possible.  The API exposed by the plugin
info is kept intentionally minimal.

Reviewers: chandlerc

Reviewed By: chandlerc

Subscribers: bollu, grosser, lksbhm, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D35258

llvm-svn: 329273
2018-04-05 11:29:37 +00:00
David Blaikie 4fe1fe1418 Fix Layering, move instrumentation transform headers into Instrumentation subdirectory
llvm-svn: 328379
2018-03-23 22:11:06 +00:00
David Blaikie 301627f875 Move SampleProfile.h into IPO along with the rest of the IPO pass headers
llvm-svn: 328262
2018-03-22 22:42:44 +00:00
Fedor Sergeev 194a407bda [New PM][IRCE] port of Inductive Range Check Elimination pass to the new pass manager
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
  so the code to add new loops was factored out

* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
  within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
  sequence (e.g. LoopSimplify) might invalidate BPI results.

  Complete solution for BPI will likely take some time to discuss and figure out,
  so for now this was partially solved by making BPI optional in IRCE
  (skipping a couple of profitability checks if it is absent).

Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.

Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795

llvm-svn: 327619
2018-03-15 11:01:19 +00:00
Vedant Kumar 3a408538f0 Remove the LoopInstSimplify pass (-loop-instsimplify)
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.

It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.

Differential Revision: https://reviews.llvm.org/D44053

llvm-svn: 327329
2018-03-12 20:49:42 +00:00
Amjad Aboud f1f57a3137 Another try to commit 323321 (aggressive instruction combine).
llvm-svn: 323416
2018-01-25 12:06:32 +00:00
Amjad Aboud d53504e379 Reverted 323321.
llvm-svn: 323326
2018-01-24 14:48:49 +00:00
Amjad Aboud e4453233d7 [InstCombine] Introducing Aggressive Instruction Combine pass (-aggressive-instcombine).
Combine expression patterns to form expressions with fewer, simple instructions.
This pass does not modify the CFG.

For example, this pass reduce width of expressions post-dominated by TruncInst
into smaller width when applicable.

It differs from instcombine pass in that it contains pattern optimization that
requires higher complexity than the O(1), thus, it should run fewer times than
instcombine pass.

Differential Revision: https://reviews.llvm.org/D38313

llvm-svn: 323321
2018-01-24 12:42:42 +00:00
Malcolm Parsons 21e545d08d Fix typos of occurred and occurrence
llvm-svn: 323318
2018-01-24 10:33:39 +00:00
David Blaikie 0c64f5a2eb NewPM: Add an extension point for the start of the pipeline.
This applies to most pipelines except the LTO and ThinLTO backend
actions - it is for use at the beginning of the overall pipeline.

This extension point will be used to add the GCOV pass when enabled in
Clang.

llvm-svn: 323166
2018-01-23 01:25:20 +00:00
Easwaran Raman bdf20261d8 Add a pass to generate synthetic function entry counts.
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.

The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)

Reviewers: davidxl, silvas

Subscribers: mgorny, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D41604

llvm-svn: 322110
2018-01-09 19:39:35 +00:00
Fedor Sergeev 02e7f0247b [PM] pass -debug-pass-manager flag into FunctionToLoopPassAdaptor's canonicalization PM
Summary:
New pass manager driver passes DebugPM (-debug-pass-manager) flag into
individual PassManager constructors in order to enable debug logging.
FunctionToLoopPassAdaptor has its own internal LoopCanonicalizationPM
which never gets its debug logging enabled and that means canonicalization
passes like LoopSimplify are never present in -debug-pass-manager output.

Extending FunctionToLoopPassAdaptor's constructor and
createFunctionToLoopPassAdaptor wrapper with an optional
boolean DebugLogging argument.

Passing debug-logging flags there as appropriate.

Reviewers: chandlerc, davide

Reviewed By: davide

Subscribers: mehdi_amini, eraman, llvm-commits, JDevlieghere

Differential Revision: https://reviews.llvm.org/D41586

llvm-svn: 321548
2017-12-29 08:16:06 +00:00
Sanjoy Das 26d11ca4b0 (Re-landing) Expose a TargetMachine::getTargetTransformInfo function
Re-land r321234.  It had to be reverted because it broke the shared
library build.  The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target.  As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).

Original commit message:

This makes the TargetMachine interface a bit simpler.  We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.

See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html

I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.

Reviewers: echristo, MatzeB, hfinkel

Reviewed By: hfinkel

Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits

Differential Revision: https://reviews.llvm.org/D41464

llvm-svn: 321375
2017-12-22 18:21:59 +00:00
Fedor Sergeev 4b86d79048 [PM] port Rewrite Statepoints For GC to the new pass manager.
Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used in this module pass is domtree,
which is a function analysis. That requires asking for the results
of each function and disallows a single interface for run-on-module
pass action.

Decided to copy-paste the main body of this pass.
Most of its code is requesting analyses anyway, so not that much
of a copy-paste.

The rest of the code movement is to transform all the implementation
helper functions like stripNonValidData into non-member statics.

Extended all the related LLVM tests with new-pass-manager use.
No failures.

Reviewers: sanjoy, anna, reames

Reviewed By: anna

Subscribers: skatkov, llvm-commits

Differential Revision: https://reviews.llvm.org/D41162

llvm-svn: 320796
2017-12-15 09:32:11 +00:00
Sanjay Patel 0ab0c1a201 [SimplifyCFG] don't sink common insts too soon (PR34603)
This should solve:
https://bugs.llvm.org/show_bug.cgi?id=34603
...by preventing SimplifyCFG from altering redundant instructions before early-cse has a chance to run.
It changes the default (canonical-forming) behavior of SimplifyCFG, so we're only doing the
sinking transform later in the optimization pipeline.

Differential Revision: https://reviews.llvm.org/D38566

llvm-svn: 320749
2017-12-14 22:05:20 +00:00
Michael Zolotukhin d8920b1c44 Remove redundant includes from various places.
llvm-svn: 320629
2017-12-13 21:31:03 +00:00
Chandler Carruth c34f789e38 Add a new pass to speculate around PHI nodes with constant (integer) operands when profitable.
The core idea is to (re-)introduce some redundancies where their cost is
hidden by the cost of materializing immediates for constant operands of
PHI nodes. When the cost of the redundancies is covered by this,
avoiding materializing the immediate has numerous benefits:
1) Less register pressure
2) Potential for further folding / combining
3) Potential for more efficient instructions due to immediate operand

As a motivating example, consider the remarkably different cost on x86
of a SHL instruction with an immediate operand versus a register
operand.

This pattern turns up surprisingly frequently, but is somewhat rarely
obvious as a significant performance problem.

The pass is entirely target independent, but it does rely on the target
cost model in TTI to decide when to speculate things around the PHI
node. I've included x86-focused tests, but any target that sets up its
immediate cost model should benefit from this pass.

There is probably more that can be done in this space, but the pass
as-is is enough to get some important performance on our internal
benchmarks, and should be generally performance neutral, but help with
more extensive benchmarking is always welcome.

One awkward part is that this pass has to be scheduled after
*everything* that can eliminate these kinds of redundancies. This
includes SimplifyCFG, GVN, etc. I'm open to suggestions about better
places to put this. We could in theory make it part of the codegen pass
pipeline, but there doesn't really seem to be a good reason for that --
it isn't "lowering" in any sense and only relies on pretty standard cost
model based TTI queries, so it seems to fit well with the "optimization"
pipeline model. Still, further thoughts on the pipeline position are
welcome.

I've also only implemented this in the new pass manager. If folks are
very interested, I can try to add it to the old PM as well, but I didn't
really see much point (my use case is already switched over to the new
PM).

I've tested this pretty heavily without issue. A wide range of
benchmarks internally show no change outside the noise, and I don't see
any significant changes in SPEC either. However, the size class
computation in tcmalloc is substantially improved by this, which turns
into a 2% to 4% win on the hottest path through tcmalloc for us, so
there are definitely important cases where this is going to make
a substantial difference.

Differential revision: https://reviews.llvm.org/D37467

llvm-svn: 319164
2017-11-28 11:32:31 +00:00
Sanjay Patel 3e29890a7f [(new) Pass Manager] instantiate SimplifyCFG with the same options as the old PM
This is a recommit of r316869 which was speculatively reverted with r317444 and 
subsequently shown to not be the cause of PR35210. That crash should be fixed
after r318237.

Original commit message:

The old PM sets the options of what used to be known as "latesimplifycfg" on the
instantiation after the vectorizers have run, so that's what we'redoing here.

FWIW, there's a later SimplifyCFGPass instantiation in both PMs where we do not
set the "late" options. I'm not sure if that's intentional or not.

Differential Revision: https://reviews.llvm.org/D39407

llvm-svn: 318299
2017-11-15 16:33:11 +00:00
Hans Wennborg e1ecd61b98 Rename CountingFunctionInserter and use for both mcount and cygprofile calls, before and after inlining
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.

This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)

LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.

Differential Revision: https://reviews.llvm.org/D39287

llvm-svn: 318195
2017-11-14 21:09:45 +00:00
Chandler Carruth 00a301d568 [PM] Port BoundsChecking to the new PM.
Registers it and everything, updates all the references, etc.

Next patch will add support to Clang's `-fexperimental-new-pass-manager`
path to actually enable BoundsChecking correctly.

Differential Revision: https://reviews.llvm.org/D39084

llvm-svn: 318128
2017-11-14 01:30:04 +00:00
David L. Jones 82b22e0327 [PassManager, SimplifyCFG] Revert r316908 and r316869.
These cause Clang to crash with a segfault. See PR35210 for details.

llvm-svn: 317444
2017-11-06 00:32:01 +00:00
Jun Bum Lim 0c99007db1 Recommit r317351 : Add CallSiteSplitting pass
This recommit r317351 after fixing a buildbot failure.

Original commit message:

    Summary:
    This change add a pass which tries to split a call-site to pass
    more constrained arguments if its argument is predicated in the control flow
    so that we can expose better context to the later passes (e.g, inliner, jump
    threading, or IPA-CP based function cloning, etc.).
    As of now we support two cases :

    1) If a call site is dominated by an OR condition and if any of its arguments
    are predicated on this OR condition, try to split the condition with more
    constrained arguments. For example, in the code below, we try to split the
    call site since we can predicate the argument (ptr) based on the OR condition.

    Split from :
          if (!ptr || c)
            callee(ptr);
    to :
          if (!ptr)
            callee(null ptr)  // set the known constant value
          else if (c)
            callee(nonnull ptr)  // set non-null attribute in the argument

    2) We can also split a call-site based on constant incoming values of a PHI
    For example,
    from :
          BB0:
           %c = icmp eq i32 %i1, %i2
           br i1 %c, label %BB2, label %BB1
          BB1:
           br label %BB2
          BB2:
           %p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
           call void @bar(i32 %p)
    to
          BB0:
           %c = icmp eq i32 %i1, %i2
           br i1 %c, label %BB2-split0, label %BB1
          BB1:
           br label %BB2-split1
          BB2-split0:
           call void @bar(i32 0)
           br label %BB2
          BB2-split1:
           call void @bar(i32 1)
           br label %BB2
          BB2:
           %p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]

llvm-svn: 317362
2017-11-03 20:41:16 +00:00
Jun Bum Lim 0eb1c2d63a Revert "Add CallSiteSplitting pass"
Revert due to Buildbot failure.

This reverts commit r317351.

llvm-svn: 317353
2017-11-03 19:17:11 +00:00
Jun Bum Lim 2a58933519 Add CallSiteSplitting pass
Summary:
This change add a pass which tries to split a call-site to pass
more constrained arguments if its argument is predicated in the control flow
so that we can expose better context to the later passes (e.g, inliner, jump
threading, or IPA-CP based function cloning, etc.).
As of now we support two cases :

1) If a call site is dominated by an OR condition and if any of its arguments
are predicated on this OR condition, try to split the condition with more
constrained arguments. For example, in the code below, we try to split the
call site since we can predicate the argument (ptr) based on the OR condition.

Split from :
      if (!ptr || c)
        callee(ptr);
to :
      if (!ptr)
        callee(null ptr)  // set the known constant value
      else if (c)
        callee(nonnull ptr)  // set non-null attribute in the argument

2) We can also split a call-site based on constant incoming values of a PHI
For example,
from :
      BB0:
       %c = icmp eq i32 %i1, %i2
       br i1 %c, label %BB2, label %BB1
      BB1:
       br label %BB2
      BB2:
       %p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
       call void @bar(i32 %p)
to
      BB0:
       %c = icmp eq i32 %i1, %i2
       br i1 %c, label %BB2-split0, label %BB1
      BB1:
       br label %BB2-split1
      BB2-split0:
       call void @bar(i32 0)
       br label %BB2
      BB2-split1:
       call void @bar(i32 1)
       br label %BB2
      BB2:
       %p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]

Reviewers: davidxl, huntergr, chandlerc, mcrosier, eraman, davide

Reviewed By: davidxl

Subscribers: sdesmalen, ashutosh.nema, fhahn, mssimpso, aemerson, mgorny, mehdi_amini, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D39137

llvm-svn: 317351
2017-11-03 19:01:57 +00:00
Sanjay Patel adf38911d8 [(new) Pass Manager] instantiate SimplifyCFG with the same options as the old PM
The old PM sets the options of what used to be known as "latesimplifycfg" on the 
instantiation after the vectorizers have run, so that's what we'redoing here.

FWIW, there's a later SimplifyCFGPass instantiation in both PMs where we do not 
set the "late" options. I'm not sure if that's intentional or not.

Differential Revision: https://reviews.llvm.org/D39407

llvm-svn: 316869
2017-10-29 20:49:31 +00:00
Matthew Simpson cb58558c2f Add CalledValuePropagation pass
This patch adds a new pass for attaching !callees metadata to indirect call
sites. The pass propagates values to call sites by performing an IPSCCP-like
analysis using the generic sparse propagation solver. For indirect call sites
having a small set of possible callees, the attached metadata indicates what
those callees are. The metadata can be used to facilitate optimizations like
intersecting the function attributes of the possible callees, refining the call
graph, performing indirect call promotion, etc.

Differential Revision: https://reviews.llvm.org/D37355

llvm-svn: 316576
2017-10-25 13:40:08 +00:00
Rong Xu e1f4245f8d [PM] Add pgo-memop-opt pass to the new pass manager
This pass adds pgo-memop-opt pass to the new pass manager.
It is in the old pass manager but somehow left out in the new pass manager.

Differential Revision: http://reviews.llvm.org/D39145

llvm-svn: 316384
2017-10-23 22:21:29 +00:00
Adam Nemet 0965da2055 Rename OptimizationDiagnosticInfo.* to OptimizationRemarkEmitter.*
Sync it up with the name of the class actually defined here.  This has been
bothering me for a while...

llvm-svn: 315249
2017-10-09 23:19:02 +00:00
Davide Italiano e070721308 [NewPassManager] Run global dead code elimination after the inliner.
This is the same exact change we did for the current pass manager
in rL314997, but the new pass manager pipeline already happened
to run GlobalOpt after the inliner, so we just insert a run of
GDCE here.

llvm-svn: 315003
2017-10-05 18:36:01 +00:00
Dehao Chen d26dae0d34 Separate the logic when handling indirect calls in SamplePGO ThinLTO compile phase and other phases.
Summary: In SamplePGO ThinLTO compile phase, we will not invoke ICP as it may introduce confusion to the 2nd annotation. This patch extracted that logic and makes it clearer before profile annotation. In the mean time, we need to make function importing process both inlined callsites as well as not promoted indirect callsites.

Reviewers: tejohnson

Reviewed By: tejohnson

Subscribers: sanjoy, mehdi_amini, llvm-commits, inglorion

Differential Revision: https://reviews.llvm.org/D38094

llvm-svn: 314619
2017-10-01 05:24:51 +00:00
Sanjay Patel 6fd4391ddd [DivRempairs] add a pass to optimize div/rem pairs (PR31028)
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented 
as an independent pass, so there's no stretching of scope and feature creep for an existing pass. 
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost 
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028

The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow 
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.

Decomposing remainder may allow removing some code from the backend (PPC and possibly others).

Differential Revision: https://reviews.llvm.org/D37121 

llvm-svn: 312862
2017-09-09 13:38:18 +00:00
Chandler Carruth 19913b22c0 [PM] Switch the CGSCC debug messages to use the standard LLVM debug
printing techniques with a DEBUG_TYPE controlling them.

It was a mistake to start re-purposing the pass manager `DebugLogging`
variable for generic debug printing -- those logs are intended to be
very minimal and primarily used for testing. More detailed and
comprehensive logging doesn't make sense there (it would only make for
brittle tests).

Moreover, we kept forgetting to propagate the `DebugLogging` variable to
various places making it also ineffective and/or unavailable. Switching
to `DEBUG_TYPE` makes this a non-issue.

llvm-svn: 310695
2017-08-11 05:47:13 +00:00
Dehao Chen 2f4e2e2758 Revert part of r310296 to make it really NFC for instrumentation PGO.
Summary: Part of r310296 will disable PGOIndirectCallPromotion in ThinLTO backend if PGOOpt is None. However, as PGOOpt is not passed down to ThinLTO backend for instrumentation based PGO, that change would actually disable ICP entirely in ThinLTO backend, making it behave differently in instrumentation PGO mode. This change reverts that change, and only disable ICP there when it is SamplePGO.

Reviewers: davidxl

Reviewed By: davidxl

Subscribers: sanjoy, mehdi_amini, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36566

llvm-svn: 310550
2017-08-10 05:10:32 +00:00
Dehao Chen 08f8831e57 Move the SampleProfileLoader right after EarlyFPM.
Summary: SampleProfileLoader pass do need to happen after some early cleanup passes so that inlining can happen correctly inside the SampleProfileLoader pass.

Reviewers: chandlerc, davidxl, tejohnson

Reviewed By: chandlerc, tejohnson

Subscribers: sanjoy, mehdi_amini, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36333

llvm-svn: 310296
2017-08-07 20:23:20 +00:00
Teresa Johnson ecd901314d [PM] Split LoopUnrollPass and make partial unroller a function pass
Summary:
This is largely NFC*, in preparation for utilizing ProfileSummaryInfo
and BranchFrequencyInfo analyses. In this patch I am only doing the
splitting for the New PM, but I can do the same for the legacy PM as
a follow-on if this looks good.

*Not NFC since for partial unrolling we lose the updates done to the
loop traversal (adding new sibling and child loops) - according to
Chandler this is not very useful for partial unrolling, but it also
means that the debugging flag -unroll-revisit-child-loops no longer
works for partial unrolling.

Reviewers: chandlerc

Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36157

llvm-svn: 309886
2017-08-02 20:35:29 +00:00
Dehao Chen 89d3226019 Update the new PM pipeline to make ICP aware if it is SamplePGO build.
Summary: In ThinLTO backend compile, OPTOptions are not set so that the ICP in ThinLTO backend does not know if it is a SamplePGO build, in which profile count needs to be annotated directly on call instructions. This patch cleaned up the PGOOptions handling logic and passes down PGOOptions to ThinLTO backend.

Reviewers: chandlerc, tejohnson, davidxl

Reviewed By: chandlerc

Subscribers: sanjoy, llvm-commits, mehdi_amini

Differential Revision: https://reviews.llvm.org/D36052

llvm-svn: 309780
2017-08-02 01:28:31 +00:00
Dehao Chen 95f003003d Refactor the build{Module|Function}SimplificationPipeline to expose optimization phase.
Summary: This is in preparation of https://reviews.llvm.org/D36052

Reviewers: chandlerc, davidxl, tejohnson

Reviewed By: chandlerc

Subscribers: sanjoy, llvm-commits

Differential Revision: https://reviews.llvm.org/D36053

llvm-svn: 309500
2017-07-30 04:55:39 +00:00
Dehao Chen ce0842ce9c Refine the PGOOpt and SamplePGOSupport handling.
Summary:
Now that SamplePGOSupport is part of PGOOpt, there are several places that need tweaking:
1. AddDiscriminator pass should *not* be invoked at ThinLTOBackend (as it's already invoked in the PreLink phase)
2. addPGOInstrPasses should only be invoked when either ProfileGenFile or ProfileUseFile is non-empty.
3. SampleProfileLoaderPass should only be invoked when SampleProfileFile is non-empty.
4. PGOIndirectCallPromotion should only be invoked in ProfileUse phase, or in ThinLTOBackend of SamplePGO.

Reviewers: chandlerc, tejohnson, davidxl

Reviewed By: chandlerc

Subscribers: sanjoy, mehdi_amini, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36040

llvm-svn: 309478
2017-07-29 04:10:24 +00:00
Dehao Chen 641f387cd0 Update the assertion to meet with the changes in r309121. (NFC)
llvm-svn: 309125
2017-07-26 15:47:00 +00:00
Dehao Chen e90d0153ca Make new PM honor -fdebug-info-for-profiling
Summary: The new PM needs to invoke add-discriminator pass when building with -fdebug-info-for-profiling.

Reviewers: chandlerc, davidxl

Reviewed By: chandlerc

Subscribers: sanjoy, llvm-commits

Differential Revision: https://reviews.llvm.org/D35744

llvm-svn: 309121
2017-07-26 15:01:20 +00:00
Philip Pfaffe 730f2f9bb6 [PM] Enable registration of out-of-tree passes with PassBuilder
Summary:
This patch adds a callback registration API to the PassBuilder,
enabling registering out-of-tree passes with it.

Through the Callback API, callers may register callbacks with the
various stages at which passes are added into pass managers, including
parsing of a pass pipeline as well as at extension points within the
default -O pipelines.

Registering utilities like `require<>` and `invalidate<>` needs to be
handled manually by the caller, but a helper is provided.

Additionally, adding passes at pipeline extension points is exposed
through the opt tool. This patch adds a `-passes-ep-X` commandline
option for every extension point X, which opt parses into pipelines
inserted into that extension point.

Reviewers: chandlerc

Reviewed By: chandlerc

Subscribers: lksbhm, grosser, davide, mehdi_amini, llvm-commits, mgorny

Differential Revision: https://reviews.llvm.org/D33464

llvm-svn: 307532
2017-07-10 10:57:55 +00:00
Dehao Chen 3a9861420c Add sample PGO support to ThinLTO new pass manager.
Summary:
For SamplePGO + ThinLTO, because profile annotation is done twice at both PrepareForThinLTO pipeline and backend compiler, the following changes are needed at the PrepareForThinLTO phase to ensure the IR is not changed dramatically. Otherwise the profile annotation will be inaccurate in the backend compiler.

* disable hot-caller heuristic
* disable loop unrolling
* disable indirect call promotion

This will unblock the new PM testing for sample PGO (tools/clang/test/CodeGen/pgo-sample-thinlto-summary.c), which will be covered in another cfe patch.

Reviewers: chandlerc, tejohnson, davidxl

Reviewed By: tejohnson

Subscribers: sanjoy, mehdi_amini, Prazek, inglorion, llvm-commits

Differential Revision: https://reviews.llvm.org/D34895

llvm-svn: 307437
2017-07-07 20:53:10 +00:00
Dehao Chen 2f31d0d86e Hook the sample PGO machinery in the new PM
Summary: This patch hooks up SampleProfileLoaderPass with the new PM.

Reviewers: chandlerc, davidxl, davide, tejohnson

Reviewed By: chandlerc, tejohnson

Subscribers: tejohnson, llvm-commits, sanjoy

Differential Revision: https://reviews.llvm.org/D34720

llvm-svn: 306763
2017-06-29 23:33:05 +00:00
Tim Shen 664706916b [ThinkLTO] Invoke build(Thin)?LTOPreLinkDefaultPipeline.
Previously it doesn't actually invoke the designated new PM builder
functions.

This patch moves NameAnonGlobalPass out from PassBuilder, as Chandler
points out that PassBuilder is used for non-O0 builds, and for
optimizations only.

Differential Revision: https://reviews.llvm.org/D34728

llvm-svn: 306756
2017-06-29 23:08:38 +00:00
Easwaran Raman 8249fac52d Create inliner params based on size and opt levels.
Differential revision: https://reviews.llvm.org/D34309

llvm-svn: 306542
2017-06-28 13:33:49 +00:00
Geoff Berry 2573a19fe6 [EarlyCSE][MemorySSA] Enable MemorySSA in function-simplification pass of EarlyCSE.
llvm-svn: 306477
2017-06-27 22:25:02 +00:00
Xinliang David Li b67530e9b9 [PGO] Implementate profile counter regiser promotion
Differential Revision: http://reviews.llvm.org/D34085

llvm-svn: 306231
2017-06-25 00:26:43 +00:00
Eric Christopher 5a7c2f1700 Remove the LoadCombine pass. It was never enabled and is unsupported.
Based on discussions with the author on mailing lists.

llvm-svn: 306067
2017-06-22 22:58:12 +00:00
Geoff Berry 3cca1da20c [EarlyCSE] Add option to use MemorySSA for function simplification run of EarlyCSE (off by default).
Summary:
Use MemorySSA for memory dependency checking in the EarlyCSE pass at the
start of the function simplification portion of the pipeline.  We rely
on the fact that GVNHoist runs just after this pass of EarlyCSE to
amortize the MemorySSA construction cost since GVNHoist uses MemorySSA
and EarlyCSE preserves it.

This is turned off by default.  A follow-up change will turn it on to
allow for easier reversion in case it breaks something.

llvm-svn: 305146
2017-06-10 15:20:03 +00:00
Davide Italiano be1b6a963e [PM] Add GVNSink to the pipeline.
With this, the two pipelines should be in sync again (modulo
LoopUnswitch, but Chandler is actively working on that).

Differential Revision:  https://reviews.llvm.org/D33810

llvm-svn: 304671
2017-06-03 23:18:29 +00:00
Davide Italiano c368831580 Move GVNHoist to the right position in the new pass manager pipeline.
GVNHoist was moved as part of simplification passes for the current
pass manager (but not for the new), so they're out-of-sync.

Differential Revision:  https://reviews.llvm.org/D33806

llvm-svn: 304490
2017-06-01 23:08:14 +00:00
Chandler Carruth 8b3be4e59d [PM/ThinLTO] Port the ThinLTO pipeline (both components) to the new PM.
Based on the original patch by Davide, but I've adjusted the API exposed
to just be different entry points rather than exposing more state
parameters. I've factored all the common logic out so that we don't have
any duplicate pipelines, we just stitch them together in different ways.
I think this makes the build easier to reason about and understand.

This adds a direct method for getting the module simplification pipeline
as well as a method to get the optimization pipeline. While not my
express goal, this seems nice and gives a good place comment about the
restrictions that are imposed on them.

I did make some minor changes to the way the pipelines are structured
here, but hopefully not ones that are significant or controversial:

1) I sunk the PGO indirect call promotion to only be run when we have
   PGO enabled (or as part of the special ThinLTO pipeline).

2) I made the extra GlobalOpt run in ThinLTO just happen all the time
   and at a slightly more powerful place (before we remove available
   externaly functions). This seems like general goodness and not a big
   compile time sink, so it didn't make sense to *only* use it in
   ThinLTO. Fewer differences in the pipeline makes everything simpler
   IMO.

3) I hoisted the ThinLTO stop point pre-link above the the RPO function
   attr inference. The RPO inference won't infer anything terribly
   meaningful pre-link (recursiveness?) so it didn't make a lot of
   sense. But if the placement of RPO inference starts to matter, we
   should move it to the canonicalization phase anyways which seems like
   a better place for it (and there is a FIXME to this effect!). But
   that seemed a bridge too far for this patch.

If we ever need to parameterize these pipelines more heavily, we can
always sink the logic to helper functions with parameters to keep those
parameters out of the public API. But the changes above seemed minor
that we could possible get away without the parameters entirely.

I added support for parsing 'thinlto' and 'thinlto-pre-link' names in
pass pipelines to make it easy to test these routines and play with them
in larger pipelines. I also added a really basic manifest of passes test
that will show exactly how the pipelines behave and work as well as
making updates to them clear.

Lastly, this factoring does introduce a nesting layer of module pass
managers in the default pipeline. I don't think this is a big deal and
the flexibility of decoupling the pipelines seems easily worth it.

Differential Revision: https://reviews.llvm.org/D33540

llvm-svn: 304407
2017-06-01 11:39:39 +00:00
Chandler Carruth 86248d5632 [PM] Enable the new simple loop unswitch pass in the new pass manager
(where it is the only realistic option).

This passes the LLVM test suite for me, but I'm clearly still hammering
on this.

llvm-svn: 303952
2017-05-26 01:24:11 +00:00
Chandler Carruth f4d62c480c [PM] Teach the PGO instrumentation pasess to run GlobalDCE before
instrumenting code.

This is important in the new pass manager. The old pass manager's
inliner has a small DCE routine embedded within it. The new pass manager
relies on the actual GlobalDCE pass for this.

Without this patch, instrumentation profiling with the new PM results in
massive code bloat in the object files because the instrumentation
itself ends up preventing DCE from working to remove the code.

We should probably change the instrumentation (and/or DCE) so that we
can eliminate dead code even if instrumented, but we shouldn't even
spend the time generating instrumentation for that code so this still
seems like a good patch.

Differential Revision: https://reviews.llvm.org/D33535

llvm-svn: 303845
2017-05-25 07:15:09 +00:00
Davide Italiano 8e7d11ab2b [NewPM] Fix an innocent but silly typo. Reported by Craig Topper.
llvm-svn: 303587
2017-05-22 23:47:11 +00:00
Davide Italiano 8a09b8eba9 [NewPM] Add a temporary cl::opt() to test NewGVN.
llvm-svn: 303586
2017-05-22 23:41:40 +00:00
Xinliang David Li 126157c3b4 [PartialInlining] Add internal options to enable partial inlining in pass pipeline (off by default)
1. Legacy: -mllvm -enable-partial-inlining
2. New:  -mllvm -enable-npm-partial-inlining -fexperimental-new-pass-manager

Differential Revision: http://reviews.llvm.org/D33382

llvm-svn: 303567
2017-05-22 16:41:57 +00:00
Easwaran Raman 5e6f9bd4f8 [PM] Add ProfileSummaryAnalysis as a required pass in the new pipeline.
Differential revision: https://reviews.llvm.org/D32768

llvm-svn: 302170
2017-05-04 16:58:45 +00:00
Chandler Carruth 1353f9a48b [PM/LoopUnswitch] Introduce a new, simpler loop unswitch pass.
Currently, this pass only focuses on *trivial* loop unswitching. At that
reduced problem it remains significantly better than the current loop
unswitch:
- Old pass is worse than cubic complexity. New pass is (I think) linear.
- New pass is much simpler in its design by focusing on full unswitching. (See
  below for details on this).
- New pass doesn't carry state for thresholds between pass iterations.
- New pass doesn't carry state for correctness (both miscompile and
  infloop) between pass iterations.
- New pass produces substantially better code after unswitching.
- New pass can handle more trivial unswitch cases.
- New pass doesn't recompute the dominator tree for the entire function
  and instead incrementally updates it.

I've ported all of the trivial unswitching test cases from the old pass
to the new one to make sure that major functionality isn't lost in the
process. For several of the test cases I've worked to improve the
precision and rigor of the CHECKs, but for many I've just updated them
to handle the new IR produced.

My initial motivation was the fact that the old pass carried state in
very unreliable ways between pass iterations, and these mechansims were
incompatible with the new pass manager. However, I discovered many more
improvements to make along the way.

This pass makes two very significant assumptions that enable most of these
improvements:

1) Focus on *full* unswitching -- that is, completely removing whatever
   control flow construct is being unswitched from the loop. In the case
   of trivial unswitching, this means removing the trivial (exiting)
   edge. In non-trivial unswitching, this means removing the branch or
   switch itself. This is in opposition to *partial* unswitching where
   some part of the unswitched control flow remains in the loop. Partial
   unswitching only really applies to switches and to folded branches.
   These are very similar to full unrolling and partial unrolling. The
   full form is an effective canonicalization, the partial form needs
   a complex cost model, cannot be iterated, isn't canonicalizing, and
   should be a separate pass that runs very late (much like unrolling).

2) Leverage LLVM's Loop machinery to the fullest. The original unswitch
   dates from a time when a great deal of LLVM's loop infrastructure was
   missing, ineffective, and/or unreliable. As a consequence, a lot of
   complexity was added which we no longer need.

With these two overarching principles, I think we can build a fast and
effective unswitcher that fits in well in the new PM and in the
canonicalization pipeline. Some of the remaining functionality around
partial unswitching may not be relevant today (not many test cases or
benchmarks I can find) but if they are I'd like to add support for them
as a separate layer that runs very late in the pipeline.

Purely to make reviewing and introducing this code more manageable, I've
split this into first a trivial-unswitch-only pass and in the next patch
I'll add support for full non-trivial unswitching against a *fixed*
threshold, exactly like full unrolling. I even plan to re-use the
unrolling thresholds, as these are incredibly similar cost tradeoffs:
we're cloning a loop body in order to end up with simplified control
flow. We should only do that when the total growth is reasonably small.

One of the biggest changes with this pass compared to the previous one
is that previously, each individual trivial exiting edge from a switch
was unswitched separately as a branch. Now, we unswitch the entire
switch at once, with cases going to the various destinations. This lets
us unswitch multiple exiting edges in a single operation and also avoids
numerous extremely bad behaviors, where we would introduce 1000s of
branches to test for thousands of possible values, all of which would
take the exact same exit path bypassing the loop. Now we will use
a switch with 1000s of cases that can be efficiently lowered into
a jumptable. This avoids relying on somehow forming a switch out of the
branches or getting horrible code if that fails for any reason.

Another significant change is that this pass actively updates the CFG
based on unswitching. For trivial unswitching, this is actually very
easy because of the definition of loop simplified form. Doing this makes
the code coming out of loop unswitch dramatically more friendly. We
still should run loop-simplifycfg (at the least) after this to clean up,
but it will have to do a lot less work.

Finally, this pass makes much fewer attempts to simplify instructions
based on the unswitch. Something like loop-instsimplify, instcombine, or
GVN can be used to do increasingly powerful simplifications based on the
now dominating predicate. The old simplifications are things that
something like loop-instsimplify should get today or a very, very basic
loop-instcombine could get. Keeping that logic separate is a big
simplifying technique.

Most of the code in this pass that isn't in the old one has to do with
achieving specific goals:
- Updating the dominator tree as we go
- Unswitching all cases in a switch in a single step.

I think it is still shorter than just the trivial unswitching code in
the old pass despite having this functionality.

Differential Revision: https://reviews.llvm.org/D32409

llvm-svn: 301576
2017-04-27 18:45:20 +00:00
Chandler Carruth c246a4c973 Disable GVN Hoist due to still more bugs being found in it. There is
also a discussion about exactly what we should do prior to re-enabling
it.

The current bug is http://llvm.org/PR32821 and the discussion about this
is in the review thread for r300200.

llvm-svn: 301505
2017-04-27 00:28:03 +00:00
Filipe Cabecinhas 92dc348773 Simplify the CFG after loop pass cleanup.
Summary:
Otherwise we might end up with some empty basic blocks or
single-entry-single-exit basic blocks.

This fixes PR32085

Reviewers: chandlerc, danielcdh

Subscribers: mehdi_amini, RKSimon, llvm-commits

Differential Revision: https://reviews.llvm.org/D30468

llvm-svn: 301395
2017-04-26 12:02:41 +00:00
Daniel Berlin 554dcd8c89 MemorySSA: Move to Analysis, from Transforms/Utils. It's used as
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.

llvm-svn: 299980
2017-04-11 20:06:36 +00:00
Rong Xu 48596b6f7a [PGO] Memory intrinsic calls optimization based on profiled size
This patch optimizes two memory intrinsic operations: memset and memcpy based
on the profiled size of the operation. The high level transformation is like:
  mem_op(..., size)
  ==>
  switch (size) {
    case s1:
       mem_op(..., s1);
       goto merge_bb;
    case s2:
       mem_op(..., s2);
       goto merge_bb;
    ...
    default:
       mem_op(..., size);
       goto merge_bb;
    }
  merge_bb:

Differential Revision: http://reviews.llvm.org/D28966

llvm-svn: 299446
2017-04-04 16:42:20 +00:00
Dehao Chen cc75d2441d Add call branch annotation for ICP promoted direct call in SamplePGO mode.
Summary: SamplePGO uses branch_weight annotation to represent callsite hotness. When ICP promotes an indirect call to direct call, we need to make sure the direct call is annotated with branch_weight in SamplePGO mode, so that downstream function inliner can use hot callsite heuristic.

Reviewers: davidxl, eraman, xur

Reviewed By: davidxl, xur

Subscribers: mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D30282

llvm-svn: 296028
2017-02-23 22:15:18 +00:00
Dehao Chen 7d230325ef Increases full-unroll threshold.
Summary:
The default threshold for fully unroll is too conservative. This patch doubles the full-unroll threshold

This change will affect the following speccpu2006 benchmarks (performance numbers were collected from Intel Sandybridge):

Performance:

403	0.11%
433	0.51%
445	0.48%
447	3.50%
453	1.49%
464	0.75%

Code size:

403	0.56%
433	0.96%
445	2.16%
447	2.96%
453	0.94%
464	8.02%

The compiler time overhead is similar with code size.

Reviewers: davidxl, mkuper, mzolotukhin, hfinkel, chandlerc

Reviewed By: hfinkel, chandlerc

Subscribers: mehdi_amini, zzheng, efriedma, haicheng, hfinkel, llvm-commits

Differential Revision: https://reviews.llvm.org/D28368

llvm-svn: 295538
2017-02-18 03:46:51 +00:00
Davide Italiano 513dfaa0a3 [PM] Hook up the instrumented PGO machinery in the new PM.
Differential Revision:  https://reviews.llvm.org/D29308

llvm-svn: 294955
2017-02-13 15:26:22 +00:00
Chandler Carruth 719ffe1a66 [PM] Add devirtualization-based iteration utility into the new PM's
default pipeline.

A clang with this patch built with ASan and asserts can build all of the
test-suite as well, so it seems to not uncover any latent problems.

Differential Revision: https://reviews.llvm.org/D29853

llvm-svn: 294888
2017-02-12 05:38:04 +00:00
Chandler Carruth e87fc8cb71 [PM] Enable GlobalsAA in the new PM's pipeline by default.
All the invalidation issues and bugs in this seem to be fixed, it has
survived a full build of the test suite plus SPEC with asserts and ASan
enabled on the Clang binary used.

Differential Revision: https://reviews.llvm.org/D29815

llvm-svn: 294887
2017-02-12 05:34:04 +00:00
Chandler Carruth 0ede22e1c0 [PM] Add Argument Promotion to the pass pipeline.
This needs explicit requires of the optimization remark emission before
loop pass pipelines containing LICM as we no longer get it from the
inliner -- Argument Promotion may invalidate it. Technically the inliner
could also have broken this, but it never came up in testing.

Differential Revision: https://reviews.llvm.org/D29595

llvm-svn: 294670
2017-02-09 23:54:57 +00:00
Chandler Carruth addcda483e [PM] Port ArgumentPromotion to the new pass manager.
Now that the call graph supports efficient replacement of a function and
spurious reference edges, we can port ArgumentPromotion to the new pass
manager very easily.

The old PM-specific bits are sunk into callbacks that the new PM simply
doesn't use. Unlike the old PM, the new PM simply does argument
promotion and afterward does the update to LCG reflecting the promoted
function.

Differential Revision: https://reviews.llvm.org/D29580

llvm-svn: 294667
2017-02-09 23:46:27 +00:00
Peter Collingbourne 857aba4410 Rename LowerTypeTestsSummaryAction to PassSummaryAction. NFCI.
I intend to use the same type with the same semantics in the WholeProgramDevirt
pass.

Differential Revision: https://reviews.llvm.org/D29746

llvm-svn: 294629
2017-02-09 21:45:01 +00:00
Daniel Berlin 439042b7ad Add PredicateInfo utility and printing pass
Summary:
This patch adds a utility to build extended SSA (see "ABCD: eliminating
array bounds checks on demand"), and an intrinsic to support it. This
is then used to get functionality equivalent to propagateEquality in
GVN, in NewGVN (without having to replace instructions as we go). It
would work similarly in SCCP or other passes. This has been talked
about a few times, so i built a real implementation and tried to
productionize it.

Copies are inserted for operands used in assumes and conditional
branches that are based on comparisons (see below for more)

Every use affected by the predicate is renamed to the appropriate
intrinsic result.

E.g.
%cmp = icmp eq i32 %x, 50
br i1 %cmp, label %true, label %false
true:
ret i32 %x
false:
ret i32 1

will become

%cmp = icmp eq i32, %x, 50
br i1 %cmp, label %true, label %false
true:
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %cmp = icmp eq i32 %x, 50 }
%x.0 = call @llvm.ssa_copy.i32(i32 %x)
ret i32 %x.0
false:
ret i23 1

(you can use -print-predicateinfo to get an annotated-with-predicateinfo dump)

This enables us to easily determine what operations are affected by a
given predicate, and how operations affected by a chain of
predicates.

Reviewers: davide, sanjoy

Subscribers: mgorny, llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D29519

Update for review comments

Fix a bug Nuno noticed where we are giving information about and/or on edges where the info is not useful and easy to use wrong

Update for review comments

llvm-svn: 294351
2017-02-07 21:10:46 +00:00
Chandler Carruth baabda9317 [PM] Port LoopLoadElimination to the new pass manager and wire it into
the main pipeline.

This is a very straight forward port. Nothing weird or surprising.

This brings the number of missing passes from the new PM's pipeline down
to three.

llvm-svn: 293249
2017-01-27 01:32:26 +00:00
Chandler Carruth a95ff38924 [PM] Flesh out almost all of the late loop passes.
With this the per-module pass pipeline is *extremely* close to the
legacy PM. The missing pieces are:
- PruneEH (or some equivalent)
- ArgumentPromotion
- LoopLoadElimination
- LoopUnswitch

I'm going to work through those in essentially that order but this seems
like a worthwhile incremental step toward the end state.

One difference in what I have here from the legacy PM is that I've
consolidated some of the per-function passes at the very end of the
pipeline into the main optimization function pipeline. The intervening
passes are *really* uninteresting and so this seems very likely to have
any effect other than minor improvement to locality.

Note that there are still some failures in the test suite, but the
compiler doesn't crash or assert.

Differential Revision: https://reviews.llvm.org/D29114

llvm-svn: 293241
2017-01-27 00:50:21 +00:00
Chandler Carruth 79b733bc6b [PM] Enable the main loop pass pipelines with everything but
loop-unswitch in the main pipelines for the new PM.

All of these now work, and Clang built using this pipeline can build the
test suite and SPEC without hitting any asserts of ASan failures.

There are still some bugs hiding though -- 7 tests regress with the new
PM. I'm going to be investigating these, but it seems worthwhile to at
least get the pipelines in place so that others can play with them, and
they aren't completely broken.

Differential Revision: https://reviews.llvm.org/D29113

llvm-svn: 293225
2017-01-26 23:21:17 +00:00
Chandler Carruth eab3b90a14 [PM] Simplify the new PM interface to the loop unroller and expose two
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.

I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.

Differential Revision: https://reviews.llvm.org/D28897

llvm-svn: 293136
2017-01-26 02:13:50 +00:00
Artur Pilipenko 8fb3d57e67 [Guards] Introduce loop-predication pass
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert

  for (i = 0; i < n; i++) {
    guard(i < len);
    ...
  }

to

  for (i = 0; i < n; i++) {
    guard(n - 1 < len);
    ...
  }

After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:

  if (n - 1 < len)
    for (i = 0; i < n; i++) {
      ...
    } 
  else
    deoptimize

This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).

Reviewed By: sanjoy

Differential Revision: https://reviews.llvm.org/D29034

llvm-svn: 293064
2017-01-25 16:00:44 +00:00
Davide Italiano 089a912365 [PM] Flesh out the new pass manager LTO pipeline.
Differential Revision:  https://reviews.llvm.org/D28996

llvm-svn: 292863
2017-01-24 00:57:39 +00:00
Chandler Carruth e9b18e3d34 [PM] Port LoopSink to the new pass manager.
Like several other loop passes (the vectorizer, etc) this pass doesn't
really fit the model of a loop pass. The critical distinction is that it
isn't intended to be pipelined together with other loop passes. I plan
to add some documentation to the loop pass manager to make this more
clear on that side.

LoopSink is also different because it doesn't really need a lot of the
infrastructure of our loop passes. For example, if there aren't loop
invariant instructions causing a preheader to exist, there is no need to
form a preheader. It also doesn't need LCSSA because this pass is
only involved in sinking invariant instructions from a preheader into
the loop, not reasoning about live-outs.

This allows some nice simplifications to the pass in the new PM where we
can directly walk the loops once without restructuring them.

Differential Revision: https://reviews.llvm.org/D28921

llvm-svn: 292589
2017-01-20 08:42:19 +00:00
Michael Kuperstein 8ecc38ef85 [PM] Add LoopVectorize to the default module pipeline
LV no longer "requires" LCSSA and LoopSimplify, and instead forms
them internally as required. So, there's nothing preventing it from
being enabled.

llvm-svn: 292464
2017-01-19 02:21:54 +00:00
Chandler Carruth 3bab7e1a79 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00
Chandler Carruth 410eaeb064 [PM] Rewrite the loop pass manager to use a worklist and augmented run
arguments much like the CGSCC pass manager.

This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.

An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.

This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.

While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.

I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.

Differential Revision: https://reviews.llvm.org/D28292

llvm-svn: 291651
2017-01-11 06:23:21 +00:00
Chandler Carruth 05ca5acc9e [PM] Introduce a devirtualization iteration layer for the new PM.
This is an orthogonal and separated layer instead of being embedded
inside the pass manager. While it adds a small amount of complexity, it
is fairly minimal and the composability and control seems worth the
cost.

The logic for this ends up being nicely isolated and targeted. It should
be easy to experiment with different iteration strategies wrapped around
the CGSCC bottom-up walk using this kind of facility.

The mechanism used to track devirtualization is the simplest one I came
up with. I think it handles most of the cases the existing iteration
machinery handles, but I haven't done a *very* in depth analysis. It
does however match the basic intended semantics, and we can tweak or
tune its exact behavior incrementally as necessary. One thing that we
may want to revisit is freshly building the value handle set on each
iteration. While I don't think this will be a significant cost (it is
strictly fewer value handles but more churn of value handes than the old
call graph), it is conceivable that we'll want a somewhat more clever
tracking mechanism. My hope is to layer that on as a follow up patch
with data supporting any implementation complexity it adds.

This code also provides for a basic count heuristic: if the number of
indirect calls decreases and the number of direct calls increases for
a given function in the SCC, we assume devirtualization is responsible.
This matches the heuristics currently used in the legacy pass manager.

Differential Revision: https://reviews.llvm.org/D23114

llvm-svn: 290665
2016-12-28 11:07:33 +00:00
Chandler Carruth e635289ee2 [PM] Disable the loop vectorizer from the new PM's pipeline as it
currenty relies on the old PM's dependency system forming LCSSA.

The new PM will require a different design for this, and for now this is
causing most of the issues I'm currently seeing in testing. I'd like to
get to a testable baseline and then work on re-enabling things one at
a time.

llvm-svn: 290644
2016-12-28 02:24:55 +00:00
Chandler Carruth 81c8edaf5c [PM] Disable more of the loop passes -- LCSSA and LoopSimplify are also
not really wired into the loop pass manager in a way that will let us
productively use these passes yet.

This lets the new PM get farther in basic testing which is useful for
establishing a good baseline of "doesn't explode". There are still
plenty of crashers in basic testing though, this just gets rid of some
noise that is well understood and not representing a specific or narrow
bug.

llvm-svn: 290601
2016-12-27 10:16:46 +00:00
Chandler Carruth 534d644b86 [PM] Try to improve the comments here to make what's going on more
clear.

Based on post-commit review suggestion from Sean. (Thanks!)

llvm-svn: 290488
2016-12-24 05:11:17 +00:00
Chandler Carruth 060ad61fbe [PM] Add support for building a default AA pipeline to the PassBuilder.
Pretty boring and lame as-is but necessary. This is definitely a place
we'll end up with extension hooks longer term. =]

Differential Revision: https://reviews.llvm.org/D28076

llvm-svn: 290449
2016-12-23 20:38:19 +00:00
Davide Italiano e05e3306a3 [NewGVN] Add the pass to PassRegistry.def.
We need to hook up here to get it working with the new PM.
Add a test while here (and remove a typo).

llvm-svn: 290350
2016-12-22 16:35:02 +00:00
Chandler Carruth e3f5064b72 [PM] Introduce a reasonable port of the main per-module pass pipeline
from the old pass manager in the new one.

I'm not trying to support (initially) the numerous options that are
currently available to customize the pass pipeline. If we end up really
wanting them, we can add them later, but I suspect many are no longer
interesting. The simplicity of omitting them will help a lot as we sort
out what the pipeline should look like in the new PM.

I've also documented to the best of my ability *why* each pass or group
of passes is used so that reading the pipeline is more helpful. In many
cases I think we have some questionable choices of ordering and I've
left FIXME comments in place so we know what to come back and revisit
going forward. But for now, I've left it as similar to the current
pipeline as I could.

Lastly, I've had to comment out several places where passes are not
ported to the new pass manager or where the loop pass infrastructure is
not yet ready. I did at least fix a few bugs in the loop pass
infrastructure uncovered by running the full pipeline, but I didn't want
to go too far in this patch -- I'll come back and re-enable these as the
infrastructure comes online. But I'd like to keep the comments in place
because I don't want to lose track of which passes need to be enabled
and where they go.

One thing that seemed like a significant API improvement was to require
that we don't build pipelines for O0. It seems to have no real benefit.

I've also switched back to returning pass managers by value as at this
API layer it feels much more natural to me for composition. But if
others disagree, I'm happy to go back to an output parameter.

I'm not 100% happy with the testing strategy currently, but it seems at
least OK. I may come back and try to refactor or otherwise improve this
in subsequent patches but I wanted to at least get a good starting point
in place.

Differential Revision: https://reviews.llvm.org/D28042

llvm-svn: 290325
2016-12-22 06:59:15 +00:00
Chandler Carruth 1d96311447 [PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.

Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
  this at all. Active discussion and investigation is going on to remove
  it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
  Why? Because it adds what I suspect is inappropriate coupling for
  little or no benefit. We will have an outer iteration system that
  tracks devirtualization including that from function passes and
  iterates already. We should improve that rather than approximate it
  here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
  reason at all.

The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.

A summary of the different things happening here:

1) Adding the usual new PM class and rigging.

2) Fixing minor underlying assumptions in the inline cost analysis or
   inline logic that don't generally hold in the new PM world.

3) Adding the core pass logic which is in essence a loop over the calls
   in the nodes in the call graph. This is a bit duplicated from the old
   inliner, but only a handful of lines could realistically be shared.
   (I tried at first, and it really didn't help anything.) All told,
   this is only about 100 lines of code, and most of that is the
   mechanics of wiring up analyses from the new PM world.

4) Updating the LazyCallGraph (in the new PM) based on the *newly
   inlined* calls and references. This is very minimal because we cannot
   form cycles.

5) When inlining removes the last use of a function, eagerly nuking the
   body of the function so that any "one use remaining" inline cost
   heuristics are immediately refined, and queuing these functions to be
   completely deleted once inlining is complete and the call graph
   updated to reflect that they have become dead.

6) After all the inlining for a particular function, updating the
   LazyCallGraph and the CGSCC pass manager to reflect the
   function-local simplifications that are done immediately and
   internally by the inline utilties. These are the exact same
   fundamental set of CG updates done by arbitrary function passes.

7) Adding a bunch of test cases to specifically target CGSCC and other
   subtle aspects in the new PM world.

Many thanks to the careful review from Easwaran and Sanjoy and others!

Differential Revision: https://reviews.llvm.org/D24226

llvm-svn: 290161
2016-12-20 03:15:32 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Chandler Carruth 6b9816477b [PM] Support invalidation of inner analysis managers from a pass over the outer IR unit.
Summary:
This never really got implemented, and was very hard to test before
a lot of the refactoring changes to make things more robust. But now we
can test it thoroughly and cleanly, especially at the CGSCC level.

The core idea is that when an inner analysis manager proxy receives the
invalidation event for the outer IR unit, it needs to walk the inner IR
units and propagate it to the inner analysis manager for each of those
units. For example, each function in the SCC needs to get an
invalidation event when the SCC gets one.

The function / module interaction is somewhat boring here. This really
becomes interesting in the face of analysis-backed IR units. This patch
effectively handles all of the CGSCC layer's needs -- both invalidating
SCC analysis and invalidating function analysis when an SCC gets
invalidated.

However, this second aspect doesn't really handle the
LoopAnalysisManager well at this point. That one will need some change
of design in order to fully integrate, because unlike the call graph,
the entire function behind a LoopAnalysis's results can vanish out from
under us, and we won't even have a cached API to access. I'd like to try
to separate solving the loop problems into a subsequent patch though in
order to keep this more focused so I've adapted them to the API and
updated the tests that immediately fail, but I've not added the level of
testing and validation at that layer that I have at the CGSCC layer.

An important aspect of this change is that the proxy for the
FunctionAnalysisManager at the SCC pass layer doesn't work like the
other proxies for an inner IR unit as it doesn't directly manage the
FunctionAnalysisManager and invalidation or clearing of it. This would
create an ever worsening problem of dual ownership of this
responsibility, split between the module-level FAM proxy and this
SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy
to work in terms of the module-level proxy and defer to it to handle
much of the updates. It only does SCC-specific invalidation. This will
become more important in subsequent patches that support more complex
invalidaiton scenarios.

Reviewers: jlebar

Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D27197

llvm-svn: 289317
2016-12-10 06:34:44 +00:00
Chandler Carruth dab4eae274 [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

llvm-svn: 287783
2016-11-23 17:53:26 +00:00
Davide Italiano 2ae76dd239 [GlobalSplit] Port to the new pass manager.
llvm-svn: 287511
2016-11-21 00:28:23 +00:00
Chris Bieneman 05c279fc4b [CMake] NFC. Updating CMake dependency specifications
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.

llvm-svn: 287206
2016-11-17 04:36:50 +00:00
Rong Xu 1c0e9b97d2 Conditionally eliminate library calls where the result value is not used
Summary:
This pass shrink-wraps a condition to some library calls where the call
result is not used. For example:
   sqrt(val);
 is transformed to
   if (val < 0)
     sqrt(val);
Even if the result of library call is not being used, the compiler cannot
safely delete the call because the function can set errno on error
conditions.
Note in many functions, the error condition solely depends on the incoming
parameter. In this optimization, we can generate the condition can lead to
the errno to shrink-wrap the call. Since the chances of hitting the error
condition is low, the runtime call is effectively eliminated.

These partially dead calls are usually results of C++ abstraction penalty
exposed by inlining. This optimization hits 108 times in 19 C/C++ programs
in SPEC2006.

Reviewers: hfinkel, mehdi_amini, davidxl

Subscribers: modocache, mgorny, mehdi_amini, xur, llvm-commits, beanz

Differential Revision: https://reviews.llvm.org/D24414

llvm-svn: 284542
2016-10-18 21:36:27 +00:00
Mehdi Amini 55b06538b5 Fix test after renaming -name-anon-functions pass to -name-anon-globals
llvm-svn: 281752
2016-09-16 17:18:16 +00:00
Mehdi Amini 27d2379b4e Rename NameAnonFunctions to NameAnonGlobals to match what it is doing (NFC)
llvm-svn: 281745
2016-09-16 16:56:30 +00:00
Sriraman Tallam 06a67ba57d [PM] Port CFGViewer and CFGPrinter to the new Pass Manager
Differential Revision: https://reviews.llvm.org/D24592

llvm-svn: 281640
2016-09-15 18:35:27 +00:00