LowerShift was using the same code as Lower256IntArith to split 256-bit vectors into 2 x 128-bit vectors, so now we just call Lower256IntArith.
llvm-svn: 264403
Differential Revision: http://reviews.llvm.org/D18456
This is a re-commit of r264387 and r264388 after fixing a typo.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264392
This reverts commit r264387.
Bots are broken in various ways, I need to take one commit at a time...
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264390
This reverts commit r264388.
Bots are broken in various ways, I need to take one commit at a time...
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264389
Summary:
Loading IR with debug info improves MDString::get() from 19ms to 10ms.
This is a rework of D16597 with adding an "emplace" method on the StringMap
to avoid requiring the MDString move ctor to be public.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17920
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264386
Summary:
StringMap ctor accepts an initialize size, but expect it to be
rounded to the next power of 2. The ctor can handle that directly
instead of expecting clients to round it. Also, since the map will
resize itself when 75% full, take this into account an initialize
a larger initial size to avoid any growth.
Reviewers: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18344
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264385
Summary:
These are just helpers calling their static counter part to
simplify client code.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18339
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264382
The motivation for MODULE_CODE_METADATA_VALUES was to enable an
-flto=thin scheme where:
1. First, one function is cherry-picked from a bitcode file.
2. Later, another function is cherry-picked.
3. Later, ...
4. Finally, the metadata needed by all the previous functions is
loaded.
This was abandoned in favour of:
1. Calculate the superset of functions needed from a Module.
2. Link all functions at once.
Delayed metadata reading no longer serves a purpose. It also adds
a few complication, since we can't count on metadata being properly
parsed when exiting the BitcodeReader. After discussing with Teresa, we
agreed to remove it.
The code that depended on this was removed/updated in r264326.
llvm-svn: 264378
This is the same as r255936, with added logic for avoiding clobbering of the
red zone (PR26023).
Differential Revision: http://reviews.llvm.org/D18246
llvm-svn: 264375
Remove logic to upgrade !llvm.loop by changing the MDString tag
directly. This old logic would check (and change) arbitrary strings
that had nothing to do with loop metadata. Instead, check !llvm.loop
attachments directly, and change which strings get attached.
Rather than updating the assembly-based upgrade, drop it entirely. It
has been quite a while since we supported upgrading textual IR.
llvm-svn: 264373
This reserves an MDKind for !llvm.loop, which allows callers to avoid a
string-based lookup. I'm not sure why it was missing.
There should be no functionality change here, just a small compile-time
speedup.
llvm-svn: 264371
We did not have an explicit branch to the continuation BB. When the check was
hoisted, this could permit control follow to fall through into the division
trap. Add the explicit branch to the continuation basic block to ensure that
code execution is correct.
llvm-svn: 264370
It is incorrect to get the corresponding MBB for a ReturnInst before
SelectAllBasicBlocks since SelectAllBasicBlocks can change the
correspondence between a ReturnInst and the MBB it is in.
PR27062
llvm-svn: 264358
Earlier we were ignoring varargs in LowerCallSiteWithDeoptBundle because
populateCallLoweringInfo does not set CallLoweringInfo::IsVarArg.
llvm-svn: 264354
We try to hoist the insertion point as high as possible to encourage
sharing. However, we must be careful not to hoist into a catchswitch as
it is both an EHPad and a terminator.
llvm-svn: 264344
Summary:
Only adds support for "naked" calls to llvm.experimental.deoptimize.
Support for round-tripping through RewriteStatepointsForGC will come
as a separate patch (should be simpler than this one).
Reviewers: reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18429
llvm-svn: 264329
In PIC mode, the registers R14, R15 and R28 are reserved for use by
the PLT handling code. This causes all functions to clobber these
registers. While this is not new for regular function calls, it does
also apply to save/restore functions, which do not follow the standard
ABI conventions with respect to the volatile/non-volatile registers.
Patch by Jyotsna Verma.
llvm-svn: 264324
Given that StatepointLowering now uniques derived pointers before
putting them in the per-statepoint spill map, we may end up with missing
entries for derived pointers when we visit a gc.relocate on a pointer
that was de-duplicated away.
Fix this by keeping two maps, one mapping gc pointers to their
de-duplicated values, and one mapping a de-duplicated value to the slot
it is spilled in.
llvm-svn: 264320
When multiple DWP files are merged together and duplicate DWO IDs are
found it's currently difficult to give an actionable error message - the
DW_AT_name of the CU could be provided, but might be identical (if the
same source file is built into two different configurations), which
doesn't help the user identify the problem.
When no intermediate DWP files are generated, the path to the two DWO
files could be provided - but is lost once the DWOs are merged into a
DWP.
So, include the name of the DWO (dwo_name) in the split file so that
collissions involving a source CU from a DWP can be better diagnosed.
(improvements to llvm-dwp using this to come shortly)
llvm-svn: 264316
isDependenceDistanceOfOne asserts that the store and the load access
through the same type. This function is also used by
removeDependencesFromMultipleStores so we need to make sure we filter
out mismatching types before reaching this point.
Now we do this when the initial candidates are gathered.
This is a refinement of the fix made in r262267.
Fixes PR27048.
llvm-svn: 264313
The `MipsMCInstrAnalysis` class overrides the `evaluateBranch` method
and calculates target addresses for branch and calls instructions.
That allows llvm-objdump to print functions' names in branch instructions
in the disassemble mode.
Differential Revision: http://reviews.llvm.org/D18209
llvm-svn: 264309
Simplify ValueEnumerator and WriteModuleMetadata by shifting the logic
for the METADATA_GENERIC_DEBUG abbreviation into WriteGenericDINode.
(This is just like r264302, but for GenericDINode.)
The only change is that the abbreviation is emitted later in the
bitcode, just before the first `GenericDINode` record. This shouldn't
be observable though.
llvm-svn: 264303
Simplify ValueEnumerator and WriteModuleMetadata by shifting the logic
for the METADATA_LOCATION abbreviation into WriteDILocation.
The only change is that the abbreviation is emitted later in the
bitcode, just before the first `DILocation` record. This shouldn't be
observable though.
llvm-svn: 264302
Split writeNamedMetadata out of WriteModuleMetadata to write named
metadata, and createNamedMetadataAbbrev for the abbreviation.
There should be no effective functionality change, although the layout
of the bitcode will change. Previously, the abbreviation was emitted at
the top of the block, but now it is delayed until immediately before the
named metadata records are emitted.
llvm-svn: 264301
KTEST instruction may be used instead of TEST in this case:
%int_sel3 = bitcast <8 x i1> %sel3 to i8
%res = icmp eq i8 %int_sel3, zeroinitializer
br i1 %res, label %L2, label %L1
Differential Revision: http://reviews.llvm.org/D18444
llvm-svn: 264298
If the operation's type has been promoted during type legalization, we
need to account for the fact that the high bits of the comparison
operand are likely unspecified.
The LHS is usually zero-extended, but MIPS sign extends it, so we have
to be slightly careful.
Patch by Simon Dardis.
llvm-svn: 264296
After comdat processing, the symbols still go through regular symbol
resolution.
We were not doing it for linkonce symbols since they are lazy linked.
This fixes pr27044.
llvm-svn: 264288
Summary:
Some target lowerings of FP_TO_FP16, for instance ARM's vcvtb.f16.f32
instruction, do not guarantee that the top 16 bits are zeroed out.
Remove the unsafe AssertZext and add tests to exercise this.
Reviewers: jmolloy, sbaranga, kristof.beyls, aadg
Subscribers: llvm-commits, srhines, aemerson
Differential Revision: http://reviews.llvm.org/D18426
llvm-svn: 264285
This patch corresponds to review:
http://reviews.llvm.org/D17711
It disables direct moves on these operations in 32-bit mode since the patterns
assume 64-bit registers. The final patch is slightly different from the
Phabricator review as the bitcast operations needed to be disabled in 32-bit
mode as well. This fixes PR26617.
llvm-svn: 264282
This patch begins adding support for lowering to the XOP VPPERM instruction - adding the X86ISD::VPPERM opcode.
Differential Revision: http://reviews.llvm.org/D18189
llvm-svn: 264260
Summary:
In particular, make the cnMIPS predicates much more obvious and prefer
def ... : ... {
let Foo = bar;
}
over:
let Foo = bar in
def ... : ...;
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18354
llvm-svn: 264258
We used to only allow SCEVAddRecExpr for pointer expressions in order to
be able to compute the bounds. However this is also trivially possible
for loop-invariant addresses (scUnknown) since then the bounds are the
address itself.
Interestingly, we used allow this for the special case when the
loop-invariant address happens to also be an SCEVAddRecExpr (in an outer
loop).
There are a couple more loops that are vectorized in SPEC after this.
My guess is that the main reason we don't see more because for example a
loop-invariant load is vectorized into a splat vector with several
vector-inserts. This is likely to make the vectorization unprofitable.
I.e. we don't notice that a later LICM will move all of this out of the
loop so the cost estimate should really be 0.
llvm-svn: 264243
We need the "return address" of a noreturn call to be within the
bounds of the calling function; TrapUnreachable turns 'unreachable'
into a 'ud2' instruction, which has that desired effect.
Differential Revision: http://reviews.llvm.org/D18414
llvm-svn: 264224
If not for lazy linking of linkonce GVs, comdats are just a
preprocessing before symbol resolution.
Lazy linking complicates it since when we pick a visible member of
comdat, we have to make sure the rest of it passes symbol resolution
too.
llvm-svn: 264223
This is a temporary crutch to enable code that currently uses std::error_code
to be incrementally moved over to Error. Requiring all Error instances be
convertible enables clients to call errorToErrorCode on any error (not just
ECErrors created by conversion *from* an error_code).
This patch also moves code for Error from ErrorHandling.cpp into a new
Error.cpp file.
llvm-svn: 264221
Strengthen tests of storing frame indices.
Right now this just creates irrelevant scheduling changes.
We don't want to have multiple frame index operands
on an instruction. There seem to be various assumptions
that at least the same frame index will not appear twice
in the LocalStackSlotAllocation pass.
There's no reason to have this happen, and it just
makes it easy to introduce bugs where the immediate
offset is appplied to the storing instruction when it should
really be applied to the value being stored as a separate
add.
This might not be sufficient. It might still be problematic
to have an add fi, fi situation, but that's even less unlikely
to happen in real code.
llvm-svn: 264200
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 264199
If a comdat is dropped, all symbols in it are dropped.
If a comdat is kept, the symbols survive to pass regular symbol
resolution.
With this patch we do that for all global symbols.
The added test is a copy of test/tools/gold/X86/comdat.ll that we now
pass.
llvm-svn: 264192
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
This should be hoisted further up so it can be used in DAGCombiner and other backends,
but I'm limiting the scope in the interest of patch minimalism.
It's not quite NFC because some of the replaced code was using an 'if' check rather
than a 'while' loop, so those cases would only look through a single bitcast.
llvm-svn: 264186
There are a few bugs in the walker that this patch addresses.
Primarily:
- Caching can break when we have multiple BBs without phis
- We weren't optimizing some phis properly
- Because of how the DFS iterator works, there were times where we
wouldn't cache any results of our DFS
I left the test cases with FIXMEs in, because I'm not sure how much
effort it will take to get those to work (read: We'll probably
ultimately have to end up redoing the walker, or we'll have to come up
with some creative caching tricks), and more test coverage = better.
Differential Revision: http://reviews.llvm.org/D18065
llvm-svn: 264180
Summary:
This changes the conversion functions from SCEV * to SCEVAddRecExpr from
ScalarEvolution and PredicatedScalarEvolution to return a SCEVAddRecExpr*
instead of a SCEV* (which removes the need of most clients to do a
dyn_cast right after calling these functions).
We also don't add new predicates if the transformation was not successful.
This is not entirely a NFC (as it can theoretically remove some predicates
from LAA when we have an unknown dependece), but I couldn't find an obvious
regression test for it.
Reviewers: sanjoy
Subscribers: sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18368
llvm-svn: 264161
If we can't handle a relocation type, report it as an error in the source,
rather than asserting. I've added a more descriptive message and a test for the
only cases of this that I've been able to trigger.
Differential Revision: http://reviews.llvm.org/D18388
llvm-svn: 264156
Now that StatepointLoweringInfo represents base pointers, derived
pointers and gc relocates as SmallVectors and not ArrayRefs, we no
longer need to allocate "backing storage" on stack in LowerStatepoint.
So elide the backing storage, and inline the trivial body of
getIncomingStatepointGCValues.
llvm-svn: 264128
We can statically decide whether or not a register pressure set is for
SGPRs or VGPRs, so we don't need to re-compute this information in
SIRegisterInfo::getRegPressureSetLimit().
Differential Revision: http://reviews.llvm.org/D14805
llvm-svn: 264126
MCContext shouldn't be accessing the filesystem - that's a gross
layering violation and makes it awkward to use as a library or in a
daemon where it may not even be allowed filesystem access.
The CWD lookup here is normally redundant anyway, since the calling
context either also looks up the CWD or sets this to something more
specific. Here, we fix up the one caller that doesn't already set up a
debug compilation dir and make it clear that the responsibility for
such set up is in the users of MCContext.
llvm-svn: 264109