Commit Graph

1495 Commits

Author SHA1 Message Date
River Riddle 9d1a0c72b4 Add a new ValueRange class.
This class represents a generic abstraction over the different ways to represent a range of Values: ArrayRef<Value *>, operand_range, result_range. This class will allow for removing the many instances of explicit SmallVector<Value *, N> construction. It has the same memory cost as ArrayRef, and only suffers cost from indexing(if+elsing the different underlying representations).

This change only updates a few of the existing usages, with more to be changed in followups; e.g. 'build' API.

PiperOrigin-RevId: 284307996
2019-12-06 20:07:23 -08:00
Mahesh Ravishankar 6500b7e0c0 NFC: Separate implementation and definition in ConvertStandardToSPIRV.cpp
PiperOrigin-RevId: 284274326
2019-12-06 15:26:17 -08:00
Alex Zinenko e96150eb46 Replace custom getBody method with an ODS-generated in gpu::LaunchOp
PiperOrigin-RevId: 284262981
2019-12-06 14:29:25 -08:00
Aart Bik d37f27251f [VecOps] Rename vector.[insert|extract]element to just vector.[insert|extract]
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.

PiperOrigin-RevId: 284240727
2019-12-06 12:39:25 -08:00
Alex Zinenko be3ed14658 LLVM::GlobalOp: take address space as builder argument
Accept the address space of the global as a builder argument when constructing
an LLVM::GlobalOp instance. This decreases the reliance of LLVM::GlobalOp users
on the internal name of the attribute used for this purpose. Update several
uses of the address space in GPU to NVVM conversion.

PiperOrigin-RevId: 284233254
2019-12-06 12:01:46 -08:00
Aart Bik b36aaeafb1 [VectorOps] Add lowering of vector.broadcast to LLVM IR
For example, a scalar broadcast

    %0 = vector.broadcast %x : f32 to vector<2xf32>
    return %0 : vector<2xf32>

which expands scalar x into vector [x,x] by lowering
to the following LLVM IR dialect to implement the
duplication over the leading dimension.

    %0 = llvm.mlir.undef : !llvm<"<2 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.insertelement %x, %0[%1 : !llvm.i64] : !llvm<"<2 x float>">
    %3 = llvm.shufflevector %2, %0 [0 : i32, 0 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
    return %3 : vector<2xf32>

In the trailing dimensions, the operand is simply
"passed through", unless a more elaborate "stretch"
is required.

For example

    %0 = vector.broadcast %arg0 : vector<1xf32> to vector<4xf32>
    return %0 : vector<4xf32>

becomes

    %0 = llvm.mlir.undef : !llvm<"<4 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.extractelement %arg0[%1 : !llvm.i64] : !llvm<"<1 x float>">
    %3 = llvm.mlir.constant(0 : index) : !llvm.i64
    %4 = llvm.insertelement %2, %0[%3 : !llvm.i64] : !llvm<"<4 x float>">
    %5 = llvm.shufflevector %4, %0 [0 : i32, 0 : i32, 0 : i32, 0 : i32] : !llvm<"<4 x float>">, !llvm<"<4 x float>">
    llvm.return %5 : !llvm<"<4 x float>">

PiperOrigin-RevId: 284219926
2019-12-06 11:02:29 -08:00
Alex Zinenko e216a72ab8 Add conversions of GPU func with memory attributions to LLVM/NVVM
GPU functions use memory attributions, a combination of Op attributes and
region arguments, to specify function-wide buffers placed in workgroup or
private memory spaces. Introduce a lowering pattern for GPU functions to be
converted to LLVM functions taking into account memory attributions. Workgroup
attributions get transformed into module-level globals with unique names
derived from function names. Private attributions get converted into
llvm.allocas inside the function body. In both cases, we inject at the
beginning of the function the IR that obtains the raw pointer to the data and
populates a MemRef descriptor based on the MemRef type of buffer, making
attributions compose with the rest of the MemRef lowering and transparent for
use with std.load and std.store. While using raw pointers instead of
descriptors might have been more efficient, it is better implemented as a
canonicalization or a separate transformation so that non-attribution memrefs
could also benefit from it.

PiperOrigin-RevId: 284208396
2019-12-06 10:08:43 -08:00
Kazuaki Ishizaki 84a6182ddd minor spelling tweaks
Closes tensorflow/mlir#290

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/290 from kiszk:spelling_tweaks_201912 9d9afd16a723dd65754a04698b3976f150a6054a
PiperOrigin-RevId: 284169681
2019-12-06 05:59:30 -08:00
nmostafa daff60cd68 Add UnrankedMemRef Type
Closes tensorflow/mlir#261

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/261 from nmostafa:nmostafa/unranked 96b6e918f6ed64496f7573b2db33c0b02658ca45
PiperOrigin-RevId: 284037040
2019-12-05 13:13:20 -08:00
Mahesh Ravishankar 4d61a79db4 Allow specification of the workgroup size for GPUToSPIRV lowering.
SPIR-V/Vulkan spec requires the workgroups size to be specified with
the spv.ExecutionMode operation. This was hard-wired to be set to a
particular value. It is now changed to be configurable by clients of
the pass or of the patterns that implement the lowering from GPU to
SPIRV.

PiperOrigin-RevId: 284017482
2019-12-05 11:31:57 -08:00
Nicolas Vasilache b3f7cf80a7 Add a CL option to Standard to LLVM lowering to use alloca instead of malloc/free.
In the future, a more configurable malloc and free interface should be used and exposed via
extra parameters to the `createLowerToLLVMPass`. Until requirements are gathered, a simple CL flag allows generating code that runs successfully on hardware that cannot use the stdlib.

PiperOrigin-RevId: 283833424
2019-12-04 14:16:00 -08:00
Nicolas Vasilache 5c0c51a997 Refactor dependencies to expose Vector transformations as patterns - NFC
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.

This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.

PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00
Mahesh Ravishankar c5ba37b6ae Add a pass to legalize operations before lowering to SPIR-V.
Not all StandardOps can be lowered to SPIR-V. For example, subview op
implementation requires use of pointer bitcasts which is not valid
according to SPIR-V spec (or at least is ambiguous about it). Such ops
need to be removed/transformed before lowering to SPIR-V. The
SPIRVLegalizationPass is added a place where such legalizations can be
added. Current implementation folds the subview ops with load/stores
so that the lowering itself does not have to convert a subview op.

PiperOrigin-RevId: 283642981
2019-12-03 16:06:17 -08:00
Mahesh Ravishankar 353fb2bd38 Convert MemRefType to a linearized array in SPIR-V lowering.
The SPIR-V lowering used nested !spv.arrays to represented
multi-dimensional arrays, with the hope that in-conjunction with the
layout annotations, the shape and layout of memref can be represented
directly. It is unclear though how portable this representation will
end up being. It will rely on driver compilers implementing complex
index computations faithfully. A more portable approach is to use
linearized arrays to represent memrefs and explicitly instantiate all
the index computation in SPIR-V. This gives added benefit that we can
further optimize the generated code in MLIR before generating the
SPIR-V binary.

PiperOrigin-RevId: 283571167
2019-12-03 10:21:16 -08:00
Alex Zinenko 993e79e9bd Fix ViewOp to have at most one offset operand
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.

Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.

Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.

PiperOrigin-RevId: 283532506
2019-12-03 06:23:04 -08:00
Stephan Herhut 2125c0e3a8 Extend conversion of SubViewOp to llvm to also support cases where size and stride
are constant (i.e., there are no size and stride operands).

We recently added canonicalization that rewrites constant size and stride operands to
SubViewOp into static information in the type, so these patterns now occur during code
generation.

PiperOrigin-RevId: 283524688
2019-12-03 05:11:49 -08:00
Alex Zinenko fdbb99cd62 Add linkage support to LLVMFuncOp
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.

PiperOrigin-RevId: 283493299
2019-12-03 00:26:44 -08:00
Lei Zhang 0d22a3fdc8 NFC: Update std.subview op to use AttrSizedOperandSegments
This turns a few manually written helper methods into auto-generated ones.

PiperOrigin-RevId: 283339617
2019-12-02 07:52:00 -08:00
Alexander Belyaev 9630fcbc52 Lower linalg.indexed_generic with libcall to LLVM.
PiperOrigin-RevId: 283328994
2019-12-02 06:30:52 -08:00
Alex Zinenko d5e627f84b Introduce Linkage attribute to the LLVM dialect
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.

See tensorflow/mlir#277.

PiperOrigin-RevId: 283309328
2019-12-02 03:28:10 -08:00
Lei Zhang a4d7650230 [spirv] NFC: Add getZero() and getOne() static method to ConstantOp
Getting constant zero or one is very common so it merits a special handy
method on spirv::ConstantOp itself.

PiperOrigin-RevId: 282832572
2019-11-27 14:13:01 -08:00
Mahesh Ravishankar 03620fa70a Misc changes to lowering to SPIR-V.
These changes to SPIR-V lowering while adding support for lowering
SUbViewOp, but are not directly related.
- Change the lowering of MemRefType to
  !spv.ptr<!spv.struct<!spv.array<...>[offset]>, ..>
  This is consistent with the Vulkan spec.
- To enable testing a simple pattern of lowering functions is added to
  ConvertStandardToSPIRVPass. This is just used to convert the type of
  the arguments of the function. The added function lowering itself is
  not meant to be the way functions are eventually lowered into SPIR-V
  dialect.

PiperOrigin-RevId: 282589644
2019-11-26 10:11:34 -08:00
Nicolas Vasilache 174076a157 Use vector.InsertStridedSlice in Vector -> Vector unrolling
This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.

Test is updated accordingly

PiperOrigin-RevId: 282451126
2019-11-25 15:56:37 -08:00
Mahesh Ravishankar f87b2fd41b NFC: Actually expose the implementation of createGPUToSPIRVLoweringPass.
A mismatch in the function declaration and function definition,
prevented the implementation of the createGPUToSPIRVLoweringPass from
being exposed.

PiperOrigin-RevId: 282419815
2019-11-25 13:19:53 -08:00
Mahesh Ravishankar bd485afda0 Introduce attributes that specify the final ABI for a spirv::ModuleOp.
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
   point function), allow specifying attributes on arguments and
   function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.

Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
   the descriptor_set, binding, storage class, etc, of the
   spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
   only workgroup size).

Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.

This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.

PiperOrigin-RevId: 282387587
2019-11-25 11:19:56 -08:00
River Riddle b8ee563449 NFC: Remove unnecessarily guarded tablegen includes.
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.

PiperOrigin-RevId: 282076728
2019-11-22 18:01:57 -08:00
Jean-Michel Gorius 104777d8e6 Unify vector op names with other dialects.
Change vector op names from VectorFooOp to Vector_FooOp and from
vector::VectorFooOp to vector::FooOp.

Closes tensorflow/mlir#257

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/257 from Kayjukh:master dfc3a0e04114885aaec8740d5951d6984d6e1577
PiperOrigin-RevId: 281967461
2019-11-22 08:24:49 -08:00
Nicolas Vasilache 6755543af5 Move Linalg Transforms that are actually Conversions - NFC
PiperOrigin-RevId: 281844602
2019-11-21 15:41:32 -08:00
Mahesh Ravishankar 19212105dd Changes to SubViewOp to make it more amenable to canonicalization.
The current SubViewOp specification allows for either all offsets,
shape and stride to be dynamic or all of them to be static. There are
opportunities for more fine-grained canonicalization based on which of
these are static. For example, if the sizes are static, the result
memref is of static shape. The specification of SubViewOp is modified
to allow on or more of offsets, shapes and strides to be statically
specified. The verification is updated to ensure that the result type
of the subview op is consistent with which of these are static and
which are dynamic.

PiperOrigin-RevId: 281560457
2019-11-20 12:32:51 -08:00
Nicolas Vasilache fa14d4f6ab Implement unrolling of vector ops to finer-grained vector ops as a pattern.
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.

This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.

PiperOrigin-RevId: 281555100
2019-11-20 11:49:36 -08:00
Christian Sigg f868adafee Make type and rank explicit in mcuMemHostRegister function.
Fix registered size of indirect MemRefType kernel arguments.

PiperOrigin-RevId: 281362940
2019-11-19 13:13:02 -08:00
Alex Zinenko 8961d8e32f Change conversion CLI flag from -lower-to-llvm to -convert-std-to-llvm
The command-line flag name `lower-to-llvm` for the pass performing dialect
conversion from the Standard dialect to the LLVM dialect is misleading and
inconsistent with most of the conversion passses. It leads the user to believe
that there are no restrictions on what can be converted, while in fact only a
subset of the Standard dialect can be converted (with operations from other
dialects converted by separate passes). Use `convert-std-to-llvm` that better
reflects what the pass does and is consistent with most other conversions.

PiperOrigin-RevId: 281238797
2019-11-19 00:34:51 -08:00
Alex Zinenko 062dd406b1 ConvertStandardToLLVM: replace assertion with graceful failure
The assertion was introduced in the early days of dialect conversion
infrastructure when we had the matching function separate from the rewriting
function. The infrastructure evolved to have a common matchAndRewrite function
and the separate matching function was dropped without chaning the rewriting
that became matchAndRewrite. This has led to assertion being triggered. Return
a matchFailure instead of failing an assertion on unsupported types.

Closes tensorflow/mlir#230

PiperOrigin-RevId: 281113741
2019-11-18 11:26:24 -08:00
Nicolas Vasilache 9732bb533c Standardize all VectorOps class names to be prefixed by Vector - NFC
This improves consistency and will concretely avoid collisions between VectorExtractElementOp and ExtractElementOp when they are included in the same transforms / rewrites.

PiperOrigin-RevId: 281101588
2019-11-18 10:39:07 -08:00
Alex Zinenko b8dc3fd812 Rename CLI flags -lower-gpu-ops-to-*-ops to -convert-gpu-to-*
This makes the flags consistent with the naming scheme used elsewhere in the
codebase for dialect conversions.

PiperOrigin-RevId: 281027517
2019-11-18 02:43:10 -08:00
Lei Zhang a0986bf43d NFC: Convert CmpIPredicate in StandardOps to use EnumAttr
This turns several hand-written functions to auto-generated ones.

PiperOrigin-RevId: 280684326
2019-11-15 10:17:31 -08:00
Nicolas Vasilache 0b271b7dfe Refactor the LowerVectorTransfers pass to use the RewritePattern infra - NFC
This is step 1/n in refactoring infrastructure along the Vector dialect to make it ready for retargetability and composable progressive lowering.

PiperOrigin-RevId: 280529784
2019-11-14 15:40:07 -08:00
Mahesh Ravishankar a78bd84cf8 NFC: Refactor Dialect Conversion targeting SPIR-V.
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
   dialect.
2) Add header files that expose functions to add patterns for the
   dialects to SPIR-V lowering, as well as a pass that does the
   dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
2019-11-14 12:34:54 -08:00
Alex Zinenko e0a0ac4b00 Add CMakeLists.txt for AffineToStandard conversion
PiperOrigin-RevId: 280470142
2019-11-14 11:28:29 -08:00
Alex Zinenko 971b8dd4d8 Move Affine to Standard conversion to lib/Conversion
This is essentially a dialect conversion and conceptually belongs to
conversions.

PiperOrigin-RevId: 280460034
2019-11-14 10:35:21 -08:00
Alex Zinenko b34a861d5a Make positions of elements in MemRef descriptor private
Previous commits removed all uses of LLVMTypeConverter::k*PosInMemRefDescriptor
outside of the MemRefDescriptor class. These numbers are an implementation
detail and can be hidden under a layer of more semantic APIs.

PiperOrigin-RevId: 280442444
2019-11-14 09:17:38 -08:00
Alex Zinenko bf5916e7a4 Use MemRefDescriptor in Vector-to-LLVM convresion
Following up on the consolidation of MemRef descriptor conversion, update
Vector-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This also makes the types of
the attributes in emitted llvm.insert/extractelement operations consistently
i64 instead of a mix of index and i64.

PiperOrigin-RevId: 280441451
2019-11-14 09:05:42 -08:00
MLIR Team 62d5b1de45 Adapt code to LLVM API updates.
PiperOrigin-RevId: 280431812
2019-11-14 08:27:19 -08:00
Nicolas Vasilache f2b6ae9991 Move VectorOps to Tablegen - (almost) NFC
This CL moves VectorOps to Tablegen and cleans up the implementation.

This is almost NFC but 2 changes occur:
  1. an interface change occurs in the padding value specification in vector_transfer_read:
     the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
     This should become an OpInterface for vectorization in the future.
  2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`

Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.

The op documentation is moved to the .td file.

PiperOrigin-RevId: 280430869
2019-11-14 08:15:23 -08:00
Alex Zinenko 7c28de4aef Use MemRefDescriptor in Linalg-to-LLVM conversion
Following up on the consolidation of MemRef descriptor conversion, update
Linalg-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This required MemRefDescriptor
to become publicly visible. Since this conversion is heavily EDSC-based,
introduce locally an additional wrapper that uses builder and location pointed
to by the EDSC context while emitting descriptor manipulation operations.

PiperOrigin-RevId: 280429228
2019-11-14 08:04:10 -08:00
Alex Zinenko ee5c2256ef Concentrate memref descriptor manipulation logic in one place
Memref descriptor is becoming increasingly complex. Memrefs are manipulated by
multiple standard instructions, each of which has a non-trivial lowering to the
LLVM dialect. This leads to verbose code that manipulates the descriptors
exposing the internals of insert/extractelement opreations. Implement a wrapper
class that contains a memref descriptor and provides semantically named methods
that build the primitive IR operations instead.

PiperOrigin-RevId: 280371225
2019-11-14 00:49:12 -08:00
River Riddle d985c74883 NFC: Refactor block signature conversion to not erase the original arguments.
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.

PiperOrigin-RevId: 280226936
2019-11-13 10:27:53 -08:00
Mahesh Ravishankar 2be53603e9 Add operations needed to support lowering of AffineExpr to SPIR-V.
Lowering of CmpIOp, DivISOp, RemISOp, SubIOp and SelectOp to SPIR-V
dialect enables the lowering of operations generated by AffineExpr ->
StandardOps conversion into the SPIR-V dialect.

PiperOrigin-RevId: 280039204
2019-11-12 13:20:06 -08:00
Mahesh Ravishankar 9d985141ef Make legality check in GPU->SPIR-V lowering of FuncOp kernel specific.
Existing check that sets FuncOp to be dynamically legal was just
checking that the types of the argument are SPIR-V compatible. Since
the current conversion from GPU to SPIR-V does not handle lowering
non-kernel functions, change the legality check to verify that the
FuncOp has the gpu.kernel attribute and has void(void) return type.

PiperOrigin-RevId: 280032782
2019-11-12 12:52:53 -08:00
Mahesh Ravishankar 104af84f4c Add Conversion to lower loop::ForOp to spirv::LoopOp.
loop::ForOp can be lowered to the structured control flow represented
by spirv::LoopOp by making the continue block of the spirv::LoopOp the
loop latch and the merge block the exit block. The resulting
spirv::LoopOp has a single back edge from the continue to header
block, and a single exit from header to merge.
PiperOrigin-RevId: 280015614
2019-11-12 11:33:27 -08:00
Nicolas Vasilache 51de3f688e Add LLVM lowering of std.subview
A followup CL will replace usage of linalg.subview by std.subview.

PiperOrigin-RevId: 279961981
2019-11-12 07:23:18 -08:00
Nicolas Vasilache f51a155337 Add support for alignment attribute in std.alloc.
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.

In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.

After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.

This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).

PiperOrigin-RevId: 279959463
2019-11-12 07:06:54 -08:00
Nicolas Vasilache 72040bf7c8 Update Linalg to use std.view
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.

PiperOrigin-RevId: 279073591
2019-11-07 06:33:10 -08:00
Nicolas Vasilache 7f6c6084b5 Add lowering of std.view to LLVM
This CL ports the lowering of linalg.view to the newly introduced std.view.
Differences in implementation relate to std.view having slightly different semantics:
1. a static or dynamic offset can be specified.
2. the size of the (contiguous) shape is passed instead of a range.
3. static size and stride information is extracted from the memref type rather than the range.

Besides these differences, lowering behaves the same.
A future CL will update Linalg to use this unified infrastructure.

PiperOrigin-RevId: 278948853
2019-11-06 15:06:16 -08:00
Mahesh Ravishankar 9cbbd8f4df Support lowering of imperfectly nested loops into GPU dialect.
The current lowering of loops to GPU only supports lowering of loop
nests where the loops mapped to workgroups and workitems are perfectly
nested. Here a new lowering is added to handle lowering of imperfectly
nested loop body with the following properties
1) The loops partitioned to workgroups are perfectly nested.
2) The loop body of the inner most loop partitioned to workgroups can
contain one or more loop nests that are to be partitioned across
workitems. Each individual loops nests partitioned to workitems should
also be perfectly nested.
3) The number of workgroups and workitems are not deduced from the
loop bounds but are passed in by the caller of the lowering as values.
4) For statements within the perfectly nested loop nest partitioned
across workgroups that are not loops, it is valid to have all threads
execute that statement. This is NOT verified.

PiperOrigin-RevId: 277958868
2019-11-01 10:52:06 -07:00
Lei Zhang 7432234f3c NFC: Use #ifndef in various .td files instead of #ifdef and #else
Upstream LLVM gained support for #ifndef with https://reviews.llvm.org/D61888

This is changed mechanically via the following command:

find . -name "*.td" -exec sed -i -e ':a' -e 'N' -e '$!ba' -e 's/#ifdef \([A-Z_]*\)\n#else/#ifndef \1/g' {} \;

PiperOrigin-RevId: 277789427
2019-10-31 13:29:50 -07:00
Alexander Belyaev 663f9e0c9f Lookup function declaration in SymbolTable not ModuleOp.
PiperOrigin-RevId: 277033167
2019-10-28 03:45:53 -07:00
Alexander Belyaev 780a108d31 Fix include guards and add tests for OpToFuncCallLowering.
PiperOrigin-RevId: 276859463
2019-10-26 08:21:36 -07:00
Alexander Belyaev d2ce435dba Add custom lowering of ExpOp for NVVM and ROCM.
PiperOrigin-RevId: 276440911
2019-10-24 01:41:57 -07:00
Christian Sigg b74af4aa5c Unify GPU op definition names with other dialects.
Rename GPU op names from gpu_Foo to GPU_FooOp.

PiperOrigin-RevId: 275882232
2019-10-21 11:10:56 -07:00
Kazuaki Ishizaki 8bfedb3ca5 Fix minor spelling tweaks (NFC)
Closes tensorflow/mlir#177

PiperOrigin-RevId: 275692653
2019-10-20 00:11:34 -07:00
Geoffrey Martin-Noble bc577eaf44 Use new eraseOp instead of replaceOp with empty values
PiperOrigin-RevId: 275631166
2019-10-19 06:04:18 -07:00
Christian Sigg c3e56cd12c Get active source lane predicate from shuffle instruction.
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.

Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.

PiperOrigin-RevId: 275616564
2019-10-19 01:53:25 -07:00
Nicolas Vasilache 2823b68580 Implement lowering of VectorTypeCastOp to LLVM
A VectorTypeCastOp can only be used to lower between statically sized contiguous memrefs of scalar and matching vector type. The sizes and strides are thus fully static and easy to determine.

A relevant test is added.

This is a step towards solving tensorflow/mlir#189.

PiperOrigin-RevId: 275538981
2019-10-18 14:00:06 -07:00
Nicolas Vasilache 3e3ab38021 Fix OSS target name GPUtoNVVMTransforms -> MLIRGPUtoNVVMTransforms
This unbreaks the `cmake -G Ninja ../llvm -DLLVM_BUILD_EXAMPLES=ON -DLLVM_TARGETS_TO_BUILD="host"`
 in my local OSS build

PiperOrigin-RevId: 275452330
2019-10-18 05:22:38 -07:00
Christian Sigg fe0ee32da5 Add gpu.barrier op to synchronize invocations of a local workgroup.
Adding gen table for rewrite patterns from GPU to NVVM dialect.

Copy missing op documentation from GPUOps.td to GPU.md.

PiperOrigin-RevId: 275419588
2019-10-18 00:30:44 -07:00
River Riddle 2acc220f17 NFC: Remove trivial builder get methods.
These don't add any value, and some are even more restrictive than the respective static 'get' method.

PiperOrigin-RevId: 275391240
2019-10-17 20:08:34 -07:00
Mahesh Ravishankar 54a8473470 Makes spv.module generated by GPU->SPIRV conversion spec compliant
Makes the spv.module generated by the GPU to SPIR-V conversion SPIR-V
spec compliant (validated using spirv-val from Vulkan tools).

1) Separate out the VulkanLayoutUtils from
DecorateSPIRVCompositeTypeLayoutPass to make it reusable within the
Type converter in SPIR-V lowering infrastructure. This is used to
compute the layout of the !spv.struct used in global variable type
description.
2) Set the capabilities of the spv.module to Shader (needed for use of
Logical Memory Model, and the extensions to
SPV_KHR_storage_buffer_storage_class for use of Storage Buffer)

PiperOrigin-RevId: 275081486
2019-10-16 11:53:07 -07:00
Christian Sigg d2f0f847af Support custom accumulator provided as region to gpu.all_reduce.
In addition to specifying the type of accumulation through the 'op' attribute, the accumulation can now also be specified as arbitrary code region.

Adds a gpu.yield op to specify the result of the accumulation.

Also support more types (integers) and accumulations (mul).

PiperOrigin-RevId: 275065447
2019-10-16 10:43:44 -07:00
Mahesh Ravishankar e7b49eef1d Allow for remapping argument to a Value in SignatureConversion.
The current SignatureConversion framework (part of DialectConversion)
allows remapping input arguments to a function from 1->0, 1->1 or
1->many arguments during conversion. Another case is where the
argument itself is dropped, but it's use are remapped to another
Value*.

An example of this is: The Vulkan/SPIR-V spec requires entry functions
to be of type void(void). The GPU -> SPIR-V conversion implemented
this without having the DialectConversion framework track the
remapping that lead to some undefined behavior. The changes here
addresses that.

PiperOrigin-RevId: 275059656
2019-10-16 10:21:03 -07:00
River Riddle dfe09cc621 Add support for PatternRewriter::eraseOp.
This hook is useful when an operation is known to be dead, and no replacement values make sense.

PiperOrigin-RevId: 275052756
2019-10-16 09:50:57 -07:00
Nicolas Vasilache abf5c60af9 Add conversion for splat of vectors of 2+D
This CL adds a missing lowering for splat of multi-dimensional vectors.
Additional support is also added to the runtime utils library to allow printing memrefs with such vectors.

PiperOrigin-RevId: 274794723
2019-10-15 06:53:08 -07:00
Alex Zinenko 8c2ea32072 Emit LLVM IR equivalent of sizeof when lowering alloc operations
Originally, the lowering of `alloc` operations has been computing the number of
bytes to allocate when lowering based on the properties of MLIR type. This does
not take into account type legalization that happens when compiling LLVM IR
down to target assembly. This legalization can widen the type, potentially
leading to out-of-bounds accesses to `alloc`ed data due to mismatches between
address computation that takes the widening into account and allocation that
does not. Use the LLVM IR's equivalent of `sizeof` to compute the number of
bytes to be allocated:
  %0 = getelementptr %type* null, %indexType 0
  %1 = ptrtoint %type* %0 to %indexType
adapted from
http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt

PiperOrigin-RevId: 274159900
2019-10-11 06:33:26 -07:00
Uday Bondhugula 47596f5345 Drop obsolete code from std to llvm memref lowering
- dropping what looks like outdated code post some of the previous
  updates

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#179

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/179 from bondhugula:llfix 2a72ea441fe1b3924802273ffbe9870afeb90f91
PiperOrigin-RevId: 274158273
2019-10-11 06:31:18 -07:00
Alexander Belyaev 7301ac72bc Rename LLVM::exp and LLVM::fmuladd to LLVM::ExpOP and LLVM::FMulAddOp.
PiperOrigin-RevId: 274154655
2019-10-11 05:38:37 -07:00
Alexander Belyaev 00d2a37e32 Add unary ops and ExpOp to Standard Dialect.
PiperOrigin-RevId: 274152154
2019-10-11 05:13:55 -07:00
Alex Zinenko 08a2ce8a14 Standard-to-LLVM conversion: check that operands have LLVM types
In Standard to LLVM dialect conversion, the binary op conversion pattern
implicitly assumed some operands were of LLVM IR dialect type. This is not
necessarily true, for example if the Ops that produce those operands did not
match the existing convresion patterns. Check if all operands are of LLVM IR
dialect type and if not, fail to patch the binary op pattern.

Closes tensorflow/mlir#168

PiperOrigin-RevId: 274063207
2019-10-10 17:19:57 -07:00
Mahesh Ravishankar 28d7f9c052 Add lowering of constant ops to SPIR-V.
The lowering is specified as a pattern and is done only if the result
is a SPIR-V scalar type or vector type.
Handling ConstantOp with index return type needs special handling
since SPIR-V dialect does not have index types. Based on the bitwidth
of the attribute value, either i32 or i64 is chosen.
Other constant lowerings are left as a TODO.

PiperOrigin-RevId: 274056805
2019-10-10 17:19:57 -07:00
Christian Sigg 82dc6c4492 Mark GPU dialect as illegal when lowering to NVVM.
PiperOrigin-RevId: 273948293
2019-10-10 06:32:12 -07:00
Alex Zinenko 5e7959a353 Use llvm.func to define functions with wrapped LLVM IR function type
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.

Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.

PiperOrigin-RevId: 273910855
2019-10-10 01:34:06 -07:00
Mahesh Ravishankar e2ed25bc43 Make SPIR-V lowering infrastructure follow Vulkan SPIR-V validation.
The lowering infrastructure needs to be enhanced to lower into a
spv.Module that is consistent with the SPIR-V spec. The following
changes are needed
1) The Vulkan/SPIR-V validation rules dictates entry functions to have
signature of void(void). This requires changes to the function
signature conversion infrastructure within the dialect conversion
framework. When an argument is dropped from the original function
signature, a function can be specified that when invoked will return
the value to use as a replacement for the argument from the original
function.
2) Some changes to the type converter to make the converted type
consistent with the Vulkan/SPIR-V validation rules,
   a) Add support for converting dynamically shaped tensors to
   spv.rtarray type.
   b) Make the global variable of type !spv.ptr<!spv.struct<...>>
3) Generate the entry point operation for the kernel functions and
automatically compute all the interface variables needed

PiperOrigin-RevId: 273784229
2019-10-09 11:25:58 -07:00
Christian Sigg 48f819c113 Change to doxygen comments. NFC.
PiperOrigin-RevId: 273707610
2019-10-09 02:46:37 -07:00
Alex Zinenko 11d12670da GPUToCUDA: attach CUBIN to the nested module rather than to the function
Originally, we were attaching attributes containing CUBIN blobs to the kernel
function called by `gpu.launch_func`. This kernel is now contained in a nested
module that is used as a compilation unit. Attach compiled CUBIN blobs to the
module rather than to the function since we were compiling the module. This
also avoids duplication of the attribute on multiple kernels within the same
module.

PiperOrigin-RevId: 273497303
2019-10-08 05:11:26 -07:00
Alex Zinenko 52e082b6ed GPUToCUDA: emit addressof directly instead of wrapping it into a getter function
Originally, the CUBIN getter function was introduced as a mechanism to
circumvent the absence of globals in the LLVM dialect. It would allocate memory
and populate it with the CUBIN data. LLVM dialect now supports globals and they
are already used to store CUBIN data, making the getter function a trivial
address computation of a global. Emit the address computation directly at the
place of `gpu.launch_func` instead of putting it in a function and calling it.
This simplifies the conversion flow and prepares it for using the
DialectConversion infrastructure.

PiperOrigin-RevId: 273496221
2019-10-08 05:03:42 -07:00
Alex Zinenko 16af5924cb Fuse GenerateCubinAccessors pass into LaunchFunctToCuda
Now that the accessor function is a trivial getter of the global variable, it
makes less sense to have the getter generation as a separate pass. Move the
getter generation into the lowering of `gpu.launch_func` to CUDA calls. This
change is mostly code motion, but the process can be simplified further by
generating the addressof inplace instead of using a call. This is will be done
in a follow-up.

PiperOrigin-RevId: 273492517
2019-10-08 04:35:33 -07:00
Alex Zinenko 90d65d32d6 Use named modules for gpu.launch_func
The kernel function called by gpu.launch_func is now placed into an isolated
nested module during the outlining stage to simplify separate compilation.
Until recently, modules did not have names and could not be referenced. This
limitation was circumvented by introducing a stub kernel at the same name at
the same nesting level as the module containing the actual kernel. This
relation is only effective in one direction: from actual kernel function to its
launch_func "caller".

Leverage the recently introduced symbol name attributes on modules to refer to
a specific nested module from `gpu.launch_func`. This removes the implicit
connection between the identically named stub and kernel functions. It also
enables support for `gpu.launch_func`s to call different kernels located in the
same module.

PiperOrigin-RevId: 273491891
2019-10-08 04:30:32 -07:00
Christian Sigg 7c765d97f9 Support reduction of partial warps.
gpu.all_reduce now supports block sizes that are not multiple of 32.

PiperOrigin-RevId: 273255204
2019-10-07 03:31:00 -07:00
Nicolas Vasilache 754ea72794 Replace constexpr MemRefType::kDynamicStrideOrOffset by a MemRefType:;getDynamicStrideOrOffset() method - NFC
This fixes global ODR-use issues, some of which manifest in Parser.cpp.

Fixes tensorflow/mlir#167.

PiperOrigin-RevId: 272886347
2019-10-04 08:58:09 -07:00
Deven Desai d064469f6f Moving the GPUIndexIntrinsicOpLowering template to a common location
The GPUIndexIntrinsicOpLowering template is currently used by the code in both the GPUToNVVM and GPUToROCDL dirs.
Moving it to a common location to remove code duplication.

Closes tensorflow/mlir#163

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/163 from deven-amd:deven-refactor-gpu-index-ops-lowering b8dc2a5f5353df196039b6ff2ad42106028693ed
PiperOrigin-RevId: 272863297
2019-10-04 06:20:05 -07:00
Christian Sigg 85dcaf19c7 Fix typos, NFC.
PiperOrigin-RevId: 272851237
2019-10-04 04:37:53 -07:00
MLIR Team 0dfa7fc908 Add fpext and fptrunc to the Standard dialect and includes conversion to LLVM
PiperOrigin-RevId: 272768027
2019-10-03 16:37:24 -07:00
Alex Zinenko bd4762502c Add parentheses around boolean operators in assert
This removes a warning and is generally a good practice.

PiperOrigin-RevId: 272613597
2019-10-03 01:47:14 -07:00
Alex Zinenko e0d78eac23 NFC: rename Conversion/ControlFlowToCFG to Conversion/LoopToStandard
This makes the name of the conversion pass more consistent with the naming
scheme, since it actually converts from the Loop dialect to the Standard
dialect rather than working with arbitrary control flow operations.

PiperOrigin-RevId: 272612112
2019-10-03 01:35:03 -07:00
Nicolas Vasilache 9604bb6269 Extract MemRefType::getStridesAndOffset as a free function and fix dynamic offset determination.
This also adds coverage with a missing test, which uncovered a bug in the conditional for testing whether an offset is dynamic or not.

PiperOrigin-RevId: 272505798
2019-10-02 13:25:05 -07:00
Deven Desai e81b3129b4 [ROCm] Adding pass to lower GPU Dialect to ROCDL Dialect.
This is a follow-up to the PRtensorflow/mlir#146 which introduced the ROCDL Dialect. This PR introduces a pass to lower GPU Dialect to the ROCDL Dialect. As with the previous PR, this one builds on the work done by @whchung, and addresses most of the review comments in the original PR.

Closes tensorflow/mlir#154

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/154 from deven-amd:deven-lower-gpu-to-rocdl 809893e08236da5ab6a38e3459692fa04247773d
PiperOrigin-RevId: 272390729
2019-10-02 01:50:30 -07:00
Alex Zinenko c760f233b3 Fix and simplify CallOp/CallIndirectOp to LLVM::CallOp conversion
A recent ABI compatibility change affected the conversion from standard
CallOp/CallIndirectOp to LLVM::CallOp by changing its signature. In order to
analyze the signature, the code was looking up the callee symbol in the module.
This is incorrect since, during the conversion, the module may contain both the
original and the converted function op that have the same symbol name. There is
no strict guarantee on which of the two symbols will be found by the lookup.
The conversion was not failing because the type legalizer converts the LLVM
types to themselves making the original and the converted function signatures
ultimately produce the same type.

Instead of looking up the function signature to get the list of result types,
use the types of the CallOp/CallIndirectOp results which must match those of
the function in valid IR. These types are guaranteed to be the original,
unconverted types when converting the operation. Furthermore, this avoids the
need to perform a lookup of a symbol name in the module which may be expensive.

Finally, propagate attributes as-is from the original op to the converted op
since they share the attribute name for the callee of direct calls and the rest
of attributes are not affected by the conversion. This removes the need for
additional contorsions between direct and indirect calls to extract the name of
the optional callee attribute only to insert it back. This also prevents the
conversion from unintentionally dropping the other attributes of the op.

PiperOrigin-RevId: 272218871
2019-10-01 08:41:50 -07:00
Nicolas Vasilache e36337a998 Unify Linalg types by using strided memrefs
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.

PiperOrigin-RevId: 272187165
2019-10-01 05:23:21 -07:00
Christian Sigg 1129931a62 Change all_reduce lowering to support 2D and 3D blocks.
Perform second reduce only with first warp. This requires an additional __sync_threads(), but doesn't need special handling when the last warp is small. This simplifies support for block sizes that are not multiple of 32.

Supporting partial warp reduce will be done in a separate CL.

PiperOrigin-RevId: 272168917
2019-10-01 02:51:15 -07:00
Nicolas Vasilache 923b33ea16 Normalize MemRefType lowering to LLVM as strided MemRef descriptor
This CL finishes the implementation of the lowering part of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).

Strided memrefs correspond conceptually to the following templated C++ struct:
```
template <typename Elem, size_t Rank>
struct {
  Elem *ptr;
  int64_t offset;
  int64_t sizes[Rank];
  int64_t strides[Rank];
};
```
The linearization procedure for address calculation for strided memrefs is the same as for linalg views:
`base_offset + SUM_i index_i * stride_i`.

The following CL will unify Linalg and Standard by removing !linalg.view in favor of strided memrefs.

PiperOrigin-RevId: 272033399
2019-09-30 11:58:54 -07:00
Christian Sigg 3d9679bde4 Switch comments from GPU dialect terms to CUDA terms (NFC).
local workgroup -> block, subgroup -> warp, invocation -> thread.

PiperOrigin-RevId: 271946342
2019-09-30 03:19:45 -07:00
Nicolas Vasilache bc4984e4f7 Add TODO to revisit coupling of CallOp to MemRefType lowering
PiperOrigin-RevId: 271619132
2019-09-27 12:03:00 -07:00
Nicolas Vasilache ddf737c5da Promote MemRefDescriptor to a pointer to struct when passing function boundaries in LLVMLowering.
The strided MemRef RFC discusses a normalized descriptor and interaction with library calls (https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
Lowering of nested LLVM structs as value types does not play nicely with externally compiled C/C++ functions due to ABI issues.
Solving the ABI problem generally is a very complex problem and most likely involves taking
a dependence on clang that we do not want atm.

A simple workaround is to pass pointers to memref descriptors at function boundaries, which this CL implement.

PiperOrigin-RevId: 271591708
2019-09-27 09:57:36 -07:00
Christian Sigg 116dac00ba Add AllReduceOp to GPU dialect with lowering to NVVM.
The reduction operation is currently fixed to "add", and the scope is fixed to "workgroup".

The implementation is currently limited to sizes that are multiple 32 (warp size) and no larger than 1024.

PiperOrigin-RevId: 271290265
2019-09-26 00:17:50 -07:00
Uday Bondhugula 458ede8775 Introduce splat op + provide its LLVM lowering
- introduce splat op in standard dialect (currently for int/float/index input
  type, output type can be vector or statically shaped tensor)
- implement LLVM lowering (when result type is 1-d vector)
- add constant folding hook for it
- while on Ops.cpp, fix some stale names

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#141

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/141 from bondhugula:splat 48976a6aa0a75be6d91187db6418de989e03eb51
PiperOrigin-RevId: 270965304
2019-09-24 12:44:58 -07:00
Nicolas Vasilache 42d8fa667b Normalize lowering of MemRef types
The RFC for unifying Linalg and Affine compilation passes into an end-to-end flow with a predictable ABI and linkage to external function calls raised the question of why we have variable sized descriptors for memrefs depending on whether they have static or dynamic dimensions  (https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).

This CL standardizes the ABI on the rank of the memrefs.
The LLVM struct for a memref becomes equivalent to:
```
template <typename Elem, size_t Rank>
struct {
  Elem *ptr;
  int64_t sizes[Rank];
};
```

PiperOrigin-RevId: 270947276
2019-09-24 11:21:49 -07:00
Mehdi Amini 5583252173 Add convenience methods to set an OpBuilder insertion point after an Operation (NFC)
PiperOrigin-RevId: 270727180
2019-09-23 11:54:55 -07:00
Christian Sigg b8676da1fc Outline GPU kernel function into a nested module.
Roll forward of commit 5684a12.

When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.

PiperOrigin-RevId: 270639748
2019-09-23 03:17:01 -07:00
Christian Sigg c900d4994e Fix a number of Clang-Tidy warnings.
PiperOrigin-RevId: 270632324
2019-09-23 02:34:27 -07:00
Manuel Freiberger 2c11997d48 Add integer sign- and zero-extension and truncation to standard.
This adds sign- and zero-extension and truncation of integer types to the
standard dialects. This allows to perform integer type conversions without
having to go to the LLVM dialect and introduce custom type casts (between
standard and LLVM integer types).

Closes tensorflow/mlir#134

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/134 from ombre5733:sext-zext-trunc-in-std c7657bc84c0ca66b304e53ec03797e09152e4d31
PiperOrigin-RevId: 270479722
2019-09-21 16:14:56 -07:00
George Karpenkov 2df646bef6 Automated rollback of commit 5684a12434
PiperOrigin-RevId: 270126672
2019-09-19 14:34:30 -07:00
MLIR Team 5684a12434 Outline GPU kernel function into a nested module.
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.

PiperOrigin-RevId: 269987720
2019-09-19 01:51:28 -07:00
MLIR Team 1c73be76d8 Unify error messages to start with lower-case.
PiperOrigin-RevId: 269803466
2019-09-18 07:45:17 -07:00
MLIR Team 1da0290c4b Error out when kernel function is not found while translating GPU calls.
PiperOrigin-RevId: 269327909
2019-09-16 07:19:36 -07:00
Alex Zinenko 6755dfdec9 Drop makePositionAttr and the like in favor of Builder::getI64ArrayAttr
The helper functions makePositionAttr() and positionAttr() were originally
introduced in the lowering-to-LLVM-dialect pass to construct integer array
attributes that are used for static positions in extract/insertelement.
Constructing an integer array attribute being fairly common, a utility function
Builder::getI64ArrayAttr was later introduced into the Builder API.  Drop
makePositionAttr and similar homegrown functions and use that API instead.
PiperOrigin-RevId: 269295836
2019-09-16 03:31:09 -07:00
Mahesh Ravishankar 9814b3fa0d Add mechanism to specify extended instruction sets in SPIR-V.
Add support for specifying extended instructions sets. The operations
in SPIR-V dialect are named as 'spv.<extension-name>.<op-name>'. Use
this mechanism to define a 'Exp' operation from GLSL(450)
instructions.
Later CLs will add support for (de)serialization of these operations,
and update the dialect generation scripts to auto-generate the
specification using the spec directly.

Additional changes:
Add a Type Constraint to OpBase.td to check for vector of specified
lengths. This is used to check that the vector type used in SPIR-V
dialect are of lengths 2, 3 or 4.
Update SPIRVBase.td to use this Type constraints for vectors.

PiperOrigin-RevId: 269234377
2019-09-15 19:40:07 -07:00
Lei Zhang 113aadddf9 Update SPIR-V symbols and use GLSL450 instead of VulkanKHR
SPIR-V recently publishes v1.5, which brings a bunch of symbols
into core. So the suffix "KHR"/"EXT"/etc. is removed from the
symbols. We use a script to pull information from the spec
directly.

Also changed conversion and tests to use GLSL450 instead of
VulkanKHR memory model. GLSL450 is still the main memory model
supported by Vulkan shaders and it does not require extra
capability to enable.

PiperOrigin-RevId: 268992661
2019-09-13 15:26:32 -07:00
River Riddle f1b100c77b NFC: Finish replacing FunctionPassBase/ModulePassBase with OpPassBase.
These directives were temporary during the generalization of FunctionPass/ModulePass to OpPass.

PiperOrigin-RevId: 268970259
2019-09-13 13:34:27 -07:00
MLIR Team 36508528c7 Overload LLVM::TerminatorOp::build() for empty operands list.
PiperOrigin-RevId: 268041584
2019-09-09 11:39:03 -07:00
MLIR Team b5652720c1 Retain address space during MLIR > LLVM conversion.
PiperOrigin-RevId: 267206460
2019-09-04 12:26:52 -07:00
Lei Zhang 5593e005c6 Add folding rule and dialect materialization hook for spv.constant
This will allow us to use MLIR's folding infrastructure to deduplicate
SPIR-V constants.

This CL also changed isValidSPIRVType in SPIRVDialect to a static method.

PiperOrigin-RevId: 266984403
2019-09-03 12:09:58 -07:00
Mehdi Amini 765d60fd4d Add missing lowering to CFG in mlir-cpu-runner + related cleanup
- the list of passes run by mlir-cpu-runner included -lower-affine and
  -lower-to-llvm but was missing -lower-to-cfg (because -lower-affine at
  some point used to lower straight to CFG); add -lower-to-cfg in
  between. IR with affine ops can now be run by mlir-cpu-runner.

- update -lower-to-cfg to be consistent with other passes (create*Pass methods
  were changed to return unique ptrs, but -lower-to-cfg appears to have been
  missed).

- mlir-cpu-runner was unable to parse custom form of affine op's - fix
  link options

- drop unnecessary run options from test/mlir-cpu-runner/simple.mlir
  (none of the test cases had loops)

- -convert-to-llvmir was changed to -lower-to-llvm at some point, but the
  create pass method name wasn't updated (this pass converts/lowers to LLVM
  dialect as opposed to LLVM IR). Fix this.

(If we prefer "convert", the cmd-line options could be changed to
"-convert-to-llvm/cfg" then.)

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#115

PiperOrigin-RevId: 266666909
2019-09-01 11:33:22 -07:00
River Riddle 4bfae66d70 Refactor the 'walk' methods for operations.
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:

    op->walk<AffineForOp>([](AffineForOp op) { ... });

is now accomplished via:

    op->walk([](AffineForOp op) { ... });

PiperOrigin-RevId: 266209552
2019-08-29 13:04:50 -07:00
Stephan Herhut 545c3e489f Port mlir-cuda-runner to use dialect conversion framework.
Instead of lowering the program in two steps (Standard->LLVM followed
by GPU->NVVM), leading to invalid IR inbetween, the runner now uses
one pattern based rewrite step to go directly from Standard+GPU to
LLVM+NVVM.

PiperOrigin-RevId: 265861934
2019-08-28 01:50:57 -07:00
Mahesh Ravishankar 4ced99c085 Enhance GPU To SPIR-V conversion to support builtins and load/store ops.
To support a conversion of a simple load-compute-store kernel from GPU
dialect to SPIR-V dialect, the conversion of operations like
"gpu.block_dim", "gpu.thread_id" which allow threads to get the launch
conversion is needed. In SPIR-V these are specified as global
variables with builin attributes. This CL adds support to specify
builtin variables in SPIR-V conversion framework. This is used to
convert the relevant operations from GPU dialect to SPIR-V dialect.
Also add support for conversion of load/store operation in Standard
dialect to SPIR-V dialect.
To simplify the conversion add a method to build a spv.AccessChain
operation that automatically determines the return type based on the
base pointer type and the indices provided.

PiperOrigin-RevId: 265718525
2019-08-27 10:50:23 -07:00
Nicolas Vasilache fa592908af Let LLVMOpLowering specify a PatternBenefit - NFC
Currently the benefit is always set to 1 which limits the ability to do A->B->C lowering

PiperOrigin-RevId: 264854146
2019-08-22 09:38:42 -07:00
River Riddle ffde975e21 NFC: Move AffineOps dialect to the Dialect sub-directory.
PiperOrigin-RevId: 264482571
2019-08-20 15:36:39 -07:00
Alex Zinenko 006fcce44a ConvertLaunchFuncToCudaCalls: use LLVM dialect globals
This conversion has been using a stack-allocated array of i8 to store the
null-terminated kernel name in order to pass it to the CUDA wrappers expecting
a C string because the LLVM dialect was missing support for globals.  Now that
the suport is introduced, use a global instead.

Refactor global string construction from GenerateCubinAccessors into a common
utility function living in the LLVM namespace.

PiperOrigin-RevId: 264382489
2019-08-20 07:52:01 -07:00
Nicolas Vasilache f55ac5c076 Add support for LLVM lowering of binary ops on n-D vector types
This CL allows binary operations on n-D vector types to be lowered to LLVMIR by performing an (n-1)-D extractvalue, 1-D vector operation and an (n-1)-D insertvalue.

PiperOrigin-RevId: 264339118
2019-08-20 02:00:22 -07:00
Nicolas Vasilache b628194013 Move Linalg and VectorOps dialects to the Dialect subdir - NFC
PiperOrigin-RevId: 264277760
2019-08-19 17:11:38 -07:00
River Riddle ba0fa92524 NFC: Move LLVMIR, SDBM, and StandardOps to the Dialect/ directory.
PiperOrigin-RevId: 264193915
2019-08-19 11:01:25 -07:00
Nicolas Vasilache 9bf69e6a2e Refactor linalg lowering to LLVM
The linalg.view type used to be lowered to a struct containing a data pointer, offset, sizes/strides information. This was problematic when passing to external functions due to ABI, struct padding and alignment issues.

The linalg.view type is now lowered to LLVMIR as a *pointer* to a struct containing the data pointer, offset and sizes/strides. This simplifies the interfacing with external library functions and makes it trivial to add new functions without creating a shim that would go from a value type struct to a pointer type.

The consequences are that:
1. lowering explicitly uses llvm.alloca in lieu of llvm.undef and performs the proper llvm.load/llvm.store where relevant.
2. the shim creation function `getLLVMLibraryCallDefinition` disappears.
3. views are passed by pointer, scalars are passed by value. In the future, other structs will be passed by pointer (on a per-need basis).

PiperOrigin-RevId: 264183671
2019-08-19 10:21:40 -07:00
Jacques Pienaar 79f53b0cf1 Change from llvm::make_unique to std::make_unique
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.

PiperOrigin-RevId: 263953918
2019-08-17 11:06:03 -07:00
Mahesh Ravishankar d745101339 Add spirv::GlobalVariableOp that allows module level definition of variables
FuncOps in MLIR use explicit capture. So global variables defined in
module scope need to have a symbol name and this should be used to
refer to the variable within the function. This deviates from SPIR-V
spec, which assigns an SSA value to variables at all scopes that can
be used to refer to the variable, which requires SPIR-V functions to
allow implicit capture. To handle this add a new op,
spirv::GlobalVariableOp that can be used to define module scope
variables.
Since instructions need an SSA value, an new spirv::AddressOfOp is
added to convert a symbol reference to an SSA value for use with other
instructions.
This also means the spirv::EntryPointOp instruction needs to change to
allow initializers to be specified using symbol reference instead of
SSA value
The current spirv::VariableOp which returns an SSA value (as defined
by SPIR-V spec) can still be used to define function-scope variables.
PiperOrigin-RevId: 263951109
2019-08-17 10:20:13 -07:00
Nicolas Vasilache f826ceef3c Extend vector.outerproduct with an optional 3rd argument
This CL adds an optional third argument to the vector.outerproduct instruction.
When such a third argument is specified, it is added to the result of the outerproduct and  is lowered to FMA intrinsic when the lowering supports it.

In the future, we can add an attribute on the `vector.outerproduct` instruction to modify the operations for which to emit code (e.g. "+/*", "max/+", "min/+", "log/exp" ...).

This CL additionally performs minor cleanups in the vector lowering and adds tests to improve coverage.

This has been independently verified to result in proper fma instructions for haswell as follows.

Input:
```
func @outerproduct_add(%arg0: vector<17xf32>, %arg1: vector<8xf32>, %arg2: vector<17x8xf32>) -> vector<17x8xf32> {
  %2 = vector.outerproduct %arg0, %arg1, %arg2 : vector<17xf32>, vector<8xf32>
  return %2 : vector<17x8xf32>
}
}
```

Command:
```
mlir-opt vector-to-llvm.mlir -vector-lower-to-llvm-dialect --disable-pass-threading | mlir-opt -lower-to-cfg -lower-to-llvm | mlir-translate --mlir-to-llvmir | opt -O3 | llc -O3 -march=x86-64 -mcpu=haswell -mattr=fma,avx2
```

Output:
```
outerproduct_add:                       # @outerproduct_add
# %bb.0:
        ...
        vmovaps 112(%rbp), %ymm8
        vbroadcastss    %xmm0, %ymm0
        ...
        vbroadcastss    64(%rbp), %ymm15
        vfmadd213ps     144(%rbp), %ymm8, %ymm0 # ymm0 = (ymm8 * ymm0) + mem
        ...
        vfmadd213ps     400(%rbp), %ymm8, %ymm9 # ymm9 = (ymm8 * ymm9) + mem
        ...
```
PiperOrigin-RevId: 263743359
2019-08-16 03:53:26 -07:00
Mahesh Ravishankar cc980aa416 Simplify the classes that support SPIR-V conversion.
Modify the Type converters to have a SPIRVBasicTypeConverter which
only handles conversion from standard types to SPIRV types. Rename
SPIRVEntryFnConverter to SPIRVTypeConverter. This contains the
SPIRVBasicTypeConverter within it.

Remove SPIRVFnLowering class and have separate utility methods to
lower a function as entry function or a non-entry function. The
current setup could end with diamond inheritence that is not very
friendly to use.  For example, you could define the following Op
conversion methods that lower from a dialect "Foo" which resuls in
diamond inheritance.

template<typename OpTy>
class FooDialect : public SPIRVOpLowering<OpTy> {...};
class FooFnLowering : public FooDialect, SPIRVFnLowering {...};

PiperOrigin-RevId: 263597101
2019-08-15 10:54:46 -07:00
Alex Zinenko 88de8b2a2b GenerateCubinAccessors: use LLVM dialect constants
The GenerateCubinAccessors was generating functions that fill
dynamically-allocated memory with the binary constant of a CUBIN attached as a
stirng attribute to the GPU kernel.  This approach was taken to circumvent the
missing support for global constants in the LLVM dialect (and MLIR in general).
Global constants were recently added to the LLVM dialect.  Change the
GenerateCubinAccessors pass to emit a global constant array of characters and a
function that returns a pointer to the first character in the array.

PiperOrigin-RevId: 263092052
2019-08-13 01:39:21 -07:00
Mehdi Amini 926fb685de Express ownership transfer in PassManager API through std::unique_ptr (NFC)
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:

  Pass *pass = ....
  pm.addPass(pass);
  pm.addPass(pass);
  pm.run(module);

PiperOrigin-RevId: 263053082
2019-08-12 19:13:12 -07:00
Nicolas Vasilache 252ada4932 Add lowering of vector dialect to LLVM dialect.
This CL is step 3/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.

This CL adds support for converting MLIR n-D vector types to (n-1)-D arrays of 1-D LLVM vectors and a conversion VectorToLLVM that lowers the `vector.extractelement` and `vector.outerproduct` instructions to the proper mix of `llvm.vectorshuffle`, `llvm.extractelement` and `llvm.mulf`.

This has been independently verified to produce proper avx2 code.

Input:
```
func @vec_1d(%arg0: vector<4xf32>, %arg1: vector<8xf32>) -> vector<8xf32> {
  %2 = vector.outerproduct %arg0, %arg1 : vector<4xf32>, vector<8xf32>
  %3 = vector.extractelement %2[0 : i32]: vector<4x8xf32>
  return %3 : vector<8xf32>
}
```

Command:
```
mlir-opt vector-to-llvm.mlir -vector-lower-to-llvm-dialect --disable-pass-threading | mlir-opt -lower-to-cfg -lower-to-llvm | mlir-translate --mlir-to-llvmir | opt -O3 | llc -O3 -march=x86-64 -mcpu=haswell -mattr=fma,avx2
```

Output:
```
vec_1d:                                 # @vec_1d
# %bb.0:
        vbroadcastss    %xmm0, %ymm0
        vmulps  %ymm1, %ymm0, %ymm0
        retq
```
PiperOrigin-RevId: 262895929
2019-08-12 04:08:57 -07:00
River Riddle 41968fb475 NFC: Update usages of OwningRewritePatternList to pass by & instead of &&.
This will allow for reusing the same pattern list, which may be costly to continually reconstruct, on multiple invocations.

PiperOrigin-RevId: 262664599
2019-08-09 17:20:29 -07:00
Nagy Mostafa 48fdc8d7a3 Add support for floating-point comparison 'fcmp' to the LLVM dialect.
This adds support for fcmp to the LLVM dialect and adds any necessary lowerings, as well as support for EDSCs.

Closes tensorflow/mlir#69

PiperOrigin-RevId: 262475255
2019-08-08 18:29:48 -07:00
River Riddle a0df3ebd15 NFC: Implement OwningRewritePatternList as a class instead of a using directive.
This allows for proper forward declaration, as opposed to leaking the internal implementation via a using directive. This also allows for all pattern building to go through 'insert' methods on the OwningRewritePatternList, replacing uses of 'push_back' and 'RewriteListBuilder'.

PiperOrigin-RevId: 261816316
2019-08-05 18:38:22 -07:00
Mehdi Amini d682877eb3 Remove non-needed includes from ConvertControlFlowToCFG.cpp (NFC)
The includes related to the LLVM dialect are not used in this file and
introduce an implicit dependencies between the two libraries which isn't
reflected in the CMakeLists.txt, causing non-deterministic build failures.

PiperOrigin-RevId: 261576935
2019-08-04 10:59:18 -07:00
Mahesh Ravishankar ea56025f1e Initial implementation to translate kernel fn in GPU Dialect to SPIR-V Dialect
This CL adds an initial implementation for translation of kernel
function in GPU Dialect (used with a gpu.launch_kernel) op to a
spv.Module. The original function is translated into an entry
function.
Most of the heavy lifting is done by adding TypeConversion and other
utility functions/classes that provide most of the functionality to
translate from Standard Dialect to SPIR-V Dialect. These are intended
to be reusable in implementation of different dialect conversion
pipelines.
Note : Some of the files for have been renamed to be consistent with
the norm used by the other Conversion frameworks.
PiperOrigin-RevId: 260759165
2019-07-30 11:55:55 -07:00
Alex Zinenko 60965b4612 Move GPU dialect to {lib,include/mlir}/Dialect
Per tacit agreement, individual dialects should now live in lib/Dialect/Name
with headers in include/mlir/Dialect/Name and tests in test/Dialect/Name.

PiperOrigin-RevId: 259896851
2019-07-25 00:41:17 -07:00
Mahesh Ravishankar 2ad92b6e50 Add a utility function to populate StdOp to SPIRV Conversion Patterns
The function populateStdOpsToSPIRVPatterns appends the conversion
patterns automatically generated from StdOpsToSPIRVConversion.td to a
list of patterns

PiperOrigin-RevId: 259677890
2019-07-23 22:38:51 -07:00
MLIR Team 8cb82c9478 Add sitofp to the standard dialect
Conversion from integers (window or input size, padding etc) to floating point is required to express many ML kernels, for example average pooling.

PiperOrigin-RevId: 259575284
2019-07-23 11:23:40 -07:00
River Riddle 3edbd8bf80 NFC: Update the LoopToStd conversion patterns to use RewritePattern instead of ConversionPattern.
These patterns don't require type changes so they don't need to be using ConversionPattern.

PiperOrigin-RevId: 259393151
2019-07-22 13:22:49 -07:00
River Riddle 00bdc8e070 Refactor region type signature conversion to be explicit via patterns.
This cl enforces that the conversion of the type signatures for regions, and thus their entry blocks, is handled via ConversionPatterns. A new hook 'applySignatureConversion' is added to the ConversionPatternRewriter to perform the desired conversion on a region. This also means that the handling of rewriting the signature of a FuncOp is moved to a pattern. A default implementation is provided via 'mlir::populateFuncOpTypeConversionPattern'. This removes the hacky implicit 'dynamically legal' status of FuncOp that was present previously, and leaves it up to the user to decide when/how to convert the signature of a function.

PiperOrigin-RevId: 259161999
2019-07-20 19:06:07 -07:00
Lei Zhang 9291868960 Place generated StandardOps to SPIR-V patterns in anonymous namespace
This avoids polluting the mlir namespace.

PiperOrigin-RevId: 258826497
2019-07-19 11:40:06 -07:00
River Riddle 8b447b6cad NFC: Expose a ConversionPatternRewriter for use with ConversionPatterns.
This specific PatternRewriter will allow for exposing hooks in the future that are only useful for the conversion framework, e.g. type conversions.

PiperOrigin-RevId: 258818122
2019-07-19 11:40:00 -07:00
River Riddle 9e3c2650d2 Refactor the conversion of block argument types in DialectConversion.
This cl begins a large refactoring over how signature types are converted in the DialectConversion infrastructure. The signatures of blocks are now converted on-demand when an operation held by that block is being converted. This allows for handling the case where a region is created as part of a pattern, something that wasn't possible previously.

This cl also generalizes the region signature conversion used by FuncOp to work on any region of any operation. This generalization allows for removing the 'apply*Conversion' functions that were specific to FuncOp/ModuleOp. The implementation currently uses a new hook on TypeConverter, 'convertRegionSignature', but this should ideally be removed in favor of using Patterns. That depends on adding support to the PatternRewriter used by ConversionPattern to allow applying signature conversions to regions, which should be coming in a followup.

PiperOrigin-RevId: 258645733
2019-07-19 11:38:45 -07:00
Nicolas Vasilache 0002e2964d Move affine.for and affine.if to ODS
As the move to ODS is made, body and region names across affine and loop dialects are uniformized.

PiperOrigin-RevId: 258416590
2019-07-16 13:45:47 -07:00
River Riddle 2b9855b5b4 Refactor DialectConversion to support different conversion modes.
Users generally want several different modes of conversion. This cl refactors DialectConversion to provide two:
* Partial (applyPartialConversion)
  - This mode allows for illegal operations to exist in the IR, and does not fail if an operation fails to be legalized.

* Full (applyFullConversion)
  - This mode fails if any operation is not properly legalized to the conversion target. This allows for ensuring that the IR after a conversion only contains operations legal for the target.

PiperOrigin-RevId: 258412243
2019-07-16 13:45:41 -07:00
Lei Zhang d36dd94c75 NFC: Move SPIR-V dialect to Dialect/ subdirectory
PiperOrigin-RevId: 258345603
2019-07-16 13:45:09 -07:00
Nicolas Vasilache e78ea03b24 Replace linalg.for by loop.for
With the introduction of the Loop dialect, uses of the `linalg.for` operation can now be subsumed 1-to-1 by `loop.for`.
This CL performs the replacement and tests are updated accordingly.

PiperOrigin-RevId: 258322565
2019-07-16 13:44:57 -07:00
River Riddle 2087bf6386 Remove lowerAffineConstructs and lowerControlFlow in favor of providing patterns.
These methods don't compose well with the rest of conversion framework, and create artificial breaks in conversion. Replace these methods with two(populateAffineToStdConversionPatterns and populateLoopToStdConversionPatterns respectively) that populate a list of patterns to perform the same behavior.

PiperOrigin-RevId: 258219277
2019-07-16 13:44:45 -07:00
Alex Zinenko ec82e1c907 Decouple LLVM dialect from Standard dialect
Due to the absence of ODS support for enum attributes, the implementation of
the LLVM dialect `icmp` operation was reusing the comparison predicate from the
Standard dialect, creating an avoidable library dependency.  With ODS support
and ICmpPredicate attribute recently introduced, the dependency is no longer
justified.  Update the Standard to LLVM convresion to also convert the
CmpIPredicate into LLVM::ICmpPredicate and remove the unnecessary includes.

Note that the MLIRLLVMIR library did not explicitly depend on MLIRStandardOps,
requiring dependees of MLIRLLVMIR to also depend on MLIRStandardOps, which
should no longer be the case.

PiperOrigin-RevId: 258148456
2019-07-16 13:43:31 -07:00
Nicolas Vasilache cca53e8527 Extract std.for std.if and std.terminator in their own dialect
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.

PiperOrigin-RevId: 258123853
2019-07-16 13:43:18 -07:00
River Riddle 8e349a48b6 Remove the 'region' field from OpBuilder.
This field wasn't updated as the insertion point changed, making it potentially dangerous given the multi-level of MLIR(e.g. 'createBlock' would always insert the new block in 'region'). This also allows for building an OpBuilder with just a context.

PiperOrigin-RevId: 257829135
2019-07-12 17:42:41 -07:00
Nicolas Vasilache cab671d166 Lower affine control flow to std control flow to LLVM dialect
This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM

The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.

LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.

PiperOrigin-RevId: 257794436
2019-07-12 08:44:28 -07:00
Alex Zinenko 2178467dca LoopsToGPU: use PassRegistration with constructor
PassRegistration with an optional constructor was introduced after the
LoopsToGPUPass, which resorted to deriving one pass from another as a means of
accepting options supplied as command-line arguments. Use PassRegistration with
constructor instead of defining a derived pass for LoopsToGPU.  Also rename the
pass to better reflect its current nature.

PiperOrigin-RevId: 257786923
2019-07-12 08:44:14 -07:00
River Riddle 9dbef0bf96 Rename FunctionAttr to SymbolRefAttr.
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.

PiperOrigin-RevId: 257650017
2019-07-12 08:43:42 -07:00
River Riddle 6da343ecfc NFC: Replace Module::getNamedFunction with lookupSymbol<FuncOp>.
This allows for removing the last direct reference to FuncOp from ModuleOp.

PiperOrigin-RevId: 257498296
2019-07-12 08:43:03 -07:00
River Riddle b3e28fca53 NFC: Remove Function::getModule.
There is already a more general 'getParentOfType' method, and 'getModule' is likely to be misused as functions get placed within different regions than ModuleOp.

PiperOrigin-RevId: 257442243
2019-07-12 08:42:21 -07:00
River Riddle fec20e590f NFC: Rename Module to ModuleOp.
Module is a legacy name that only exists as a typedef of ModuleOp.

PiperOrigin-RevId: 257427248
2019-07-10 10:11:21 -07:00
River Riddle 6b6dc59f30 Update ModuleOp::create(...) to take a Location instead of a context.
This allows for giving a Module a more interesting location than 'Unknown'.

PiperOrigin-RevId: 257310117
2019-07-10 10:11:00 -07:00
River Riddle 8c44367891 NFC: Rename Function to FuncOp.
PiperOrigin-RevId: 257293379
2019-07-10 10:10:53 -07:00
Alex Zinenko 80e2871087 Extend AffineToGPU to support Linalg loops
Extend the utility that converts affine loop nests to support other types of
loops by abstracting away common behavior through templates.  This also
slightly simplifies the existing Affine to GPU conversion by always passing in
the loop step as an additional kernel argument even though it is a known
constant.  If it is used, it will be propagated into the loop body by the
existing canonicalization pattern and can be further constant-folded, otherwise
it will be dropped by canonicalization.

This prepares for the common loop abstraction that will be used for converting
to GPU kernels, which is conceptually close to Linalg loops, while maintaining
the existing conversion operational.

PiperOrigin-RevId: 257172216
2019-07-09 05:26:50 -07:00
River Riddle 626b8b6a5d NFC: Remove `Module::getFunctions` in favor of a general `getOps<T>`.
Modules can now contain more than just Functions, this just updates the iteration API to reflect that. The 'begin'/'end' methods have also been updated to iterate over opaque Operations.

PiperOrigin-RevId: 257099084
2019-07-08 18:28:17 -07:00
Lei Zhang 891a7911c2 Add dependencies for standard ops to SPIR-V conversion
PiperOrigin-RevId: 257026374
2019-07-08 12:40:21 -07:00
River Riddle ce502af9cd NFC: Remove the various "::getFunction" methods.
These methods assume that a function is a valid builtin top-level operation, and removing these methods allows for decoupling FuncOp and IR/. Utility "getParentOfType" methods have been added to Operation/OpState to allow for querying the first parent operation of a given type.

PiperOrigin-RevId: 257018913
2019-07-08 12:40:08 -07:00
Stephan Herhut e8b21a75f8 Add an mlir-cuda-runner tool.
This tool allows to execute MLIR IR snippets written in the GPU dialect
on a CUDA capable GPU. For this to work, a working CUDA install is required
and the build has to be configured with MLIR_CUDA_RUNNER_ENABLED set to 1.

PiperOrigin-RevId: 256551415
2019-07-04 07:53:54 -07:00
Stephan Herhut 1bcaa3185d Add missing mlir:: namespace in definition of createConvertToLLVMIRPass.
PiperOrigin-RevId: 256546769
2019-07-04 07:53:31 -07:00
Alex Zinenko 9a1b6fec79 Make ConvertStandardToLLVMPass extendable with other patterns
Extend the LLVM lowering pass to accept callbacks that construct an instance of
(a subclass of) LLVMTypeConverter and populate a list of conversion patterns.
These callbacks will be called when the pass processes a module and their
results will be used to set up the dialect conversion infrastructure.  Clients
can now provide additional conversion patterns to avoid the need of
materializing type conversions between LLVM and other types.

PiperOrigin-RevId: 256532415
2019-07-04 07:53:19 -07:00
Lei Zhang 0782b37936 NFC: Move Standard to SPIR-V conversion to lib/Conversion
PiperOrigin-RevId: 256271759
2019-07-03 14:35:42 -07:00
River Riddle 206e55cc16 NFC: Refactor Module to be value typed.
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.

PiperOrigin-RevId: 256196193
2019-07-02 16:43:36 -07:00
River Riddle 54cd6a7e97 NFC: Refactor Function to be value typed.
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).

PiperOrigin-RevId: 255983022
2019-07-01 11:39:00 -07:00
Alex Zinenko d046b2ddec Expose AffineToGPUPass for use with PassManager
Originally, AffineToGPUPass was created and registered in the source file
mainly for testing purposes.  Provide a factory function that constructs
AffineToGPU pass to make it usable in pass pipelines.

PiperOrigin-RevId: 255902831
2019-07-01 09:55:24 -07:00
Stephan Herhut 630119f84f Add a pass that inserts getters for all cubins found via nvvm.cubin
annotations.

Getters are required as there are currently no global constants in MLIR and this
is an easy way to unblock CUDA execution while waiting for those.

PiperOrigin-RevId: 255169002
2019-06-26 05:33:11 -07:00
Stephan Herhut c72c6c3907 Make GPU to CUDA transformations independent of CUDA runtime.
The actual transformation from PTX source to a CUDA binary is now factored out,
enabling compiling and testing the transformations independently of a CUDA
runtime.

MLIR has still to be built with NVPTX target support for the conversions to be
built and tested.

PiperOrigin-RevId: 255167139
2019-06-26 05:16:37 -07:00
River Riddle a4c3a6455c Move the emitError/Warning/Remark utility methods out of MLIRContext and into the mlir namespace.
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.

PiperOrigin-RevId: 255112791
2019-06-25 21:32:23 -07:00
Alex Zinenko 2628641b23 GPUtoNVVM: adjust integer bitwidth when lowering special register ops
GPU dialect operations (launch and launch_func) use `index` type for thread and
block index values inside the kernel, for compatibility with affine loops.
NVVM dialect operations, following the NVVM intrinsics, use `!llvm.i32` type,
which does not necessarily have the same bit width as the lowered `index` type.
Optionally sign-extend (indices are signed) or truncate the result of the NVVM
dialect operation to the bit width of the lowered `index` type before passing
it to other operations.  This behavior is consistent with `std.index_cast`.  We
cannot use the latter since we are targeting LLVM dialect types directly,
rather than standard integer types.

PiperOrigin-RevId: 254980868
2019-06-25 09:21:26 -07:00
Stephan Herhut 10f320f7c0 Add gpu::GPUDialect::isKernel helper.
Also some mild cleanup of the kernel to cubin conversion pass.

PiperOrigin-RevId: 254959303
2019-06-25 09:20:40 -07:00
Alex Zinenko f35d0c8570 NVVM target: emit nvvm.annotations for kernel functions
PTX backend in LLVM expects additional module-level metadata
`!nvvm.annotations` that lists functions that can be used as GPU kernels.
Generate this metadata based on the `gpu.kernel` attribute attached to
functions.  This attribute is added automatically by the kernel outlining pass
in the GPU dialect lowering flow.

PiperOrigin-RevId: 254957345
2019-06-25 09:19:27 -07:00
River Riddle 9764ae3f24 Refactor the TypeConverter to support more robust type conversions:
* Support for 1->0 type mappings, i.e. when the argument is being removed.
* Reordering types when converting a type signature.
* Adding new inputs when converting a type signature.

This cl also lays down the initial foundation for supporting 1->N type mappings, but full support will come in a followup.

Moving forward, function signature changes will be driven by populating a SignatureConversion instance. This class contains all of the necessary information for adding/removing/remapping function signatures; e.g. addInputs, addResults, remapInputs, etc.

PiperOrigin-RevId: 254064665
2019-06-19 23:08:33 -07:00
Stephan Herhut 9d81081d90 Add a pass that translates GPU.launch_func into a series of runtime calls.
This does not map the calls to the CUDA libary directly but uses a slim wrapper
ABI on top that has more convenient types for code generation and is stable. Such
ABI is expected to be provided by the actual runner.

PiperOrigin-RevId: 253983833
2019-06-19 23:07:43 -07:00
Alex Zinenko 14e2f4a22b Fix GPUToNVVM naming: NNVM should have been NVVM
Rename `createLowerGpuOpsToNNVMOpsPass` to `createLowerGpuOpsToNVVMOpsPass`.

PiperOrigin-RevId: 253801577
2019-06-19 23:06:36 -07:00
Alex Zinenko b9beff0384 Make examples/Linalg3 depend on the new standard to LLVM conversion library.
PiperOrigin-RevId: 253767820
2019-06-19 23:05:57 -07:00
Stephan Herhut e0596a4d63 Use llvm::StringSwitch in lowering of GPU ops to NVVM ops.
PiperOrigin-RevId: 253767688
2019-06-19 23:05:48 -07:00
Stephan Herhut 893374bfa2 Add a pass that translates a CUDA kernel function (tagged with nvvm.kernel) to
a CUBIN blob for execution on CUDA GPUs.

This is a first in a series of patches to build a simple CUDA runner to allow
experimenting with MLIR code on GPUs.

PiperOrigin-RevId: 253758915
2019-06-19 23:05:37 -07:00
Alex Zinenko f218519cc2 Introduce std.index_cast and its lowering+translation to LLVM
Index types integers of platform-specific bit width.  They are used to index
memrefs and as loop induction variables, however they could not be obtained
from an integer until now, making it virtually impossible to express indirect
accesses (given that memrefs of indices are not allowed) or data-dependent
loops.  Introduce `std.index_cast` to transform indices into integers and vice
versa.  The semantics of this cast is to sign-extend when casting to a wider
integer, and to truncate when casting to a narrower integer.  It belongs to
StandardOps because both types it operates on are standard types, and because
its results are likely to be used in std.load and std.store.

Introduce llvm.sext, llvm.zext and llvm.trunc operations to the LLVM dialect.
Provide the conversion of `std.index_cast` to llvm.sext or llvm.trunc,
depending on the actual bitwidth of `index` known during the conversion.

PiperOrigin-RevId: 253624100
2019-06-19 23:04:01 -07:00
Alex Zinenko 4291ae7431 Factor Region::getUsedValuesDefinedAbove into Transforms/RegionUtils
Arguably, this function is only useful for transformations and should not
pollute the main IR.  Also make sure it accepts a the resulting container
by-reference instead of returning it.

PiperOrigin-RevId: 253622981
2019-06-19 23:03:51 -07:00
Stephan Herhut a14eeacf2c Add lowering pass from GPU dialect operations to LLVM/NVVM intrinsics.
PiperOrigin-RevId: 253551452
2019-06-19 23:03:30 -07:00
Alex Zinenko ebea5767fb Start moving conversions to {lib,include/mlir}/Conversion
Conversions from dialect A to dialect B depend on both A and B.  Therefore, it
is reasonable for them to live in a separate library that depends on both
DialectA and DialectB library, and does not forces dependees of DialectA or
DialectB to also link in the conversion.  Create the directory layout for the
conversions and move the Standard to LLVM dialect conversion as the first
example.

PiperOrigin-RevId: 253312252
2019-06-19 23:02:50 -07:00
Alex Zinenko ee6f84aebd Convert a nest affine loops to a GPU kernel
This converts entire loops into threads/blocks.  No check on the size of the
block or grid, or on the validity of parallelization is performed, it is under
the responsibility of the caller to strip-mine the loops and to perform the
dependence analysis before calling the conversion.

PiperOrigin-RevId: 253189268
2019-06-19 23:02:02 -07:00