This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
llvm-svn: 300153
This typedef used to be conditional based on whether rvalue references were supported. Looks like it got left behind when we switched to always having rvalue references with c++11. I don't think it provides any value now.
llvm-svn: 300146
Improve performance of argument list parsing with large numbers of IDs and
large numbers of arguments, by tracking a conservative range of indexes within
the argument list that might contain an argument with each ID. In the worst
case (when the first and last argument with a given ID are at the opposite ends
of the argument list), this still results in a linear-time walk of the list,
but it helps substantially in the common case where each ID occurs only once,
or a few times close together in the list.
This gives a ~10x speedup to clang's `test/Driver/response-file.c`, which
constructs a very large set of command line arguments and feeds them to the
clang driver.
Differential Revision: https://reviews.llvm.org/D30130
llvm-svn: 300135
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
llvm-svn: 300134
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
The test fails on Darwin because Fuzzer::DeathCallback (which calls
DumpCurrentUnit("crash-")) is called before DumpCurrentUnit("oom-") is
called in Fuzzer::RssLimitCallback. DeathCallback is transitively called
from __sanitizer_print_memory_profile.
This should fix the fuzzer bot that has been failing for a while:
http://lab.llvm.org:8080/green/job/libFuzzer/
llvm-svn: 300127
Previously it tried to call SimplifyInstruction which doesn't know anything about alloca so defers to constant folding which also doesn't do anything with alloca. This results in wasted cycles making calls that won't do anything. Given the frequency with which this function is called this time adds up.
llvm-svn: 300118
If workgroup size is known inform llvm about range returned by local
id and local size queries.
Differential Revision: https://reviews.llvm.org/D31804
llvm-svn: 300102
Summary:
Readnone attribute would cause CSE of two barriers with
the same argument, which is invalid by example:
struct Base {
virtual int foo() { return 42; }
};
struct Derived1 : Base {
int foo() override { return 50; }
};
struct Derived2 : Base {
int foo() override { return 100; }
};
void foo() {
Base *x = new Base{};
new (x) Derived1{};
int a = std::launder(x)->foo();
new (x) Derived2{};
int b = std::launder(x)->foo();
}
Here 2 calls of std::launder will produce @llvm.invariant.group.barrier,
which would be merged into one call, causing devirtualization
to devirtualize second call into Derived1::foo() instead of
Derived2::foo()
Reviewers: chandlerc, dberlin, hfinkel
Subscribers: llvm-commits, rsmith, amharc
Differential Revision: https://reviews.llvm.org/D31531
llvm-svn: 300101
Often you have a unique_ptr<T> where T supports LLVM's
casting methods, and you wish to cast it to a unique_ptr<U>.
Prior to this patch, this requires doing hacky things like:
unique_ptr<U> Casted;
if (isa<U>(Orig.get()))
Casted.reset(cast<U>(Orig.release()));
This is overly verbose, and it would be nice to just be able
to use unique_ptr directly with cast and dyn_cast. To this end,
this patch updates cast<> to work directly with unique_ptr<T>,
so you can now write:
auto Casted = cast<U>(std::move(Orig));
Since it's possible for dyn_cast<> to fail, however, we choose
to use a slightly different API here, because it's awkward to
write
if (auto Casted = dyn_cast<U>(std::move(Orig))) {}
when Orig may end up not having been moved at all. So the
interface for dyn_cast is
if (auto Casted = unique_dyn_cast<U>(Orig)) {}
Where the inclusion of `unique` in the name of the cast operator
re-affirms that regardless of success of or fail of the casting,
exactly one of the input value and the return value will contain
a non-null result.
Differential Revision: https://reviews.llvm.org/D31890
llvm-svn: 300098
This replicates the known bits and constant creation code from the single use case for these instructions and adds it here. The computeKnownBits and constant creation code for other instructions is now in the default case of the opcode switch.
llvm-svn: 300094
We already handled a superset check that included the known ones too and folded to a constant that may include ones. But it can also handle the case of no ones.
llvm-svn: 300093
As discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32486
...the canonicalization of vector select to shufflevector does not hold up
when undef elements are present in the condition vector.
Try to make the undef handling clear in the code and the LangRef.
Differential Revision: https://reviews.llvm.org/D31980
llvm-svn: 300092
The use of a DenseMap in precomputeTriangleChains does not cause
non-determinism, even though it is iterated over, as the only thing the
iteration does is to insert entries into a new DenseMap, which is not iterated.
Comment only change.
llvm-svn: 300088
Currently if we reach an instruction with multiples uses we know we can't do any optimizations to that instruction itself since we only have the demanded bits for one of the users. But if we know all of the bits are zero/one for that one user we can still go ahead and create a constant to give to that user.
This might then reduce the instruction to having a single use and allow additional optimizations on the other path.
This picks up an additional case that r300075 didn't catch.
Differential Revision: https://reviews.llvm.org/D31552
llvm-svn: 300084
The current heuristic is triggered on `InFlightCount > BufferLimit`
which isn't really helpful on in-order cores where BufferLimit is zero.
Note that we already get latency hiding effects for in order cores
by instructions staying in the pending queue on stalls; The additional
latency scheduling heuristics only have minimal effects after that while
occasionally increasing register pressure too much resulting in extra
spills.
My motivation here is additional spills/reloads ending up in a loop in
464.h264ref / BlockMotionSearch function resulting in a 4% overal
regression on an in order core. rdar://30264380
llvm-svn: 300083
If we are adding/subtractings 0s below the highest demanded bit we can just use the other operand and remove the operation.
My primary motivation is observing that we can call ShrinkDemandedConstant for the add/sub and create a 0 constant, rather than removing the add completely. In the case I saw, we modified the constant on an add instruction to a 0, but the add is not put into the worklist. So we didn't revisit it until the next InstCombine iteration. This caused an IR modification to remove add and a subsequent iteration to be ran.
With this change we get bypass the add in the first iteration and prevent the second iteration from changing anything.
Differential Revision: https://reviews.llvm.org/D31120
llvm-svn: 300075
One potential way to make InstCombine (very slightly?) faster is to recycle instructions
when possible instead of creating new ones. It's not explicitly stated AFAIK, but we don't
consider this an "InstSimplify". We could, however, make a new layer to house transforms
like this if that makes InstCombine more manageable (just throwing out an idea; not sure
how much opportunity is actually here).
Differential Revision: https://reviews.llvm.org/D31863
llvm-svn: 300067
Use '2>&1 |' and not '|&' to pipe debug output to FileCheck
Hopefully handles a "shell parser error" on
llvm-clang-x86_64-expensive-checks-win
test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
llvm-svn: 300064
On FreeBSD backtrace is not part of libc and depends on libexecinfo
being available. Instead of using manual checks we can use the builtin
CMake module FindBacktrace.cmake to detect availability of backtrace()
in a portable way.
Patch By: Alex Richardson
Differential Revision: https://reviews.llvm.org/D27143
llvm-svn: 300062
In getEntryCost(), make the scalar type for a compare instruction that of the
operands, not i1. This is needed in order to call getCmpSelInstrCost() for a
compare in a sensible way, the same way as the LoopVectorizer does.
New test: test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
Review: Matthew Simpson
https://reviews.llvm.org/D31601
llvm-svn: 300061
The cost for a branch after vectorization is very different depending on if
the vectorizer will if-convert the block (branch is eliminated), or if
scalarized and predicated blocks will be produced (branch duplicated before
each block). There is also the case of remaining scalar branches, such as the
back-edge branch.
This patch handles these cases differently with TTI based cost estimates.
Review: Matthew Simpson
https://reviews.llvm.org/D31175
llvm-svn: 300058