target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
Per Anna's comment, this is a better way to handle "to-do list"-type failures.
This way we'll know if any of the features get fixed; in an XFAIL file, /all/
the cases have to be fixed before lit would tell us anything.
llvm-svn: 158791
-stable-loops enables a new algorithm for generating the Loop
forest. It differs from the original algorithm in a few respects:
- Not determined by use-list order.
- Initially guarantees RPO order of block and subloops.
- Linear in the number of CFG edges.
- Nonrecursive.
I didn't want to change the LoopInfo API yet, so the block lists are
still inclusive. This seems strange to me, and it means that building
LoopInfo is not strictly linear, but it may not be a problem in
practice. At least the block lists start out in RPO order now. In the
future we may add an attribute or wrapper analysis that allows other
passes to assume RPO order.
The primary motivation of this work was not to optimize LoopInfo, but
to allow reproducing performance issues by decomposing the compilation
stages. I'm often unable to do this with the current LoopInfo, because
the loop tree order determines Loop pass order. Serializing the IR
tends to invert the order, which reverses the optimization order. This
makes it nearly impossible to debug interdependent loop optimizations
such as LSR.
I also believe this will provide more stable performance results across time.
llvm-svn: 158790
The implementation only needs inclusion from LoopInfo.cpp and
MachineLoopInfo.cpp. Clients of the interface should only include the
interface. This makes the interface readable and speeds up rebuilds
after modifying the implementation.
llvm-svn: 158787
The default global placement new just returns the pointer it is given.
Note that other custom 'new' implementations with placement args are not
guaranteed to do this.
In addition, we need to invalidate placement args, since they may be updated by
the allocator function. (Also, right now we don't properly handle the
constructor inside a CXXNewExpr, so we need to invalidate the placement args
just so that callers know something changed!)
This invalidation is not perfect because CallOrObjCMessage doesn't support
CXXNewExpr, and all of our invalidation callbacks expect that if there's no
CallOrObjCMessage, the invalidation is happening manually (e.g. by a direct
assignment) and shouldn't affect checker-specific metadata (like malloc state);
hence the malloc test case in new-fail.cpp. But region values are now
properly invalidated, at least.
The long-term solution to this problem is to rework CallOrObjCMessage into
something more general, rather than the morass of branches it is today.
<rdar://problem/11679031>
llvm-svn: 158784
[NSNumber numberWithDouble:cppb];
warning: converting to boxing syntax requires a cast
to something like:
[NSNumber numberWithDouble:cppb];
warning: converting to boxing syntax requires casting 'bool' to 'double'
This is way better to fully understand the warning.
rdar://11705106
llvm-svn: 158783
* Escaped # and < characters in Doxygen comments as needed;
* Removed a Doxygen comment in HeaderSearch.cpp that was redundant with
the corresponding comment in the header file.
llvm-svn: 158776
Also add a couple of unit tests to check the invalid-PCH error messages
to satisfy PR4568 and for the assertion (introduced in r149918 and fixed
in r158769) that would cause clang to crash when given an empty PCH.
llvm-svn: 158772
* Retain comments in the AST
* Serialize/deserialize comments
* Find comments attached to a certain Decl
* Expose raw comment text and SourceRange via libclang
llvm-svn: 158771
llvm::RawMemoryObject handles empty ranges just fine, and the assert can
be triggered in the wild by e.g. invoking clang with a file that
included an empty pre-compiled header file when clang has been built
with assertions enabled. Without assertions enabled, clang will properly
report that the empty file is not a valid PCH.
llvm-svn: 158769
When LiveIntervals is tracking fixed interference in regunits, make sure
to update those intervals as well. Currently guarded by -live-regunits.
llvm-svn: 158766
Add error checking for the static qualifier which is now allowed in certain situations for OpenCL 1.2. Use the CL version to turn on this feature.
Added test case for 1.2 static storage class feature.
llvm-svn: 158759
ensureAlignment() in MachineFunction). Also, drop setMaxAlignment() in
favor of this new function. This creates a main entry point to setting
MaxAlignment, which will be helpful for future work. No functionality
change intended.
llvm-svn: 158758
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
llvm-svn: 158757
name as an existing ivar since this is common source of error
when people remove @synthesize to take advantage of autosynthesis.
// rdar://11671080
llvm-svn: 158756
The original r158700 caused crashes in the gcc test suite,
g++.abi/vtable3a.C among others. It also caused failures in the libc++
test suite.
llvm-svn: 158749
The PPC::EXTSW instruction preserves the low 32 bits of its input, just
like some of the x86 instructions. Use it to reduce register pressure
when the low 32 bits have multiple uses.
This requires a small change to PeepholeOptimizer since EXTSW takes a
64-bit input register.
This is related to PR5997.
llvm-svn: 158743