Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
Often you have a unique_ptr<T> where T supports LLVM's
casting methods, and you wish to cast it to a unique_ptr<U>.
Prior to this patch, this requires doing hacky things like:
unique_ptr<U> Casted;
if (isa<U>(Orig.get()))
Casted.reset(cast<U>(Orig.release()));
This is overly verbose, and it would be nice to just be able
to use unique_ptr directly with cast and dyn_cast. To this end,
this patch updates cast<> to work directly with unique_ptr<T>,
so you can now write:
auto Casted = cast<U>(std::move(Orig));
Since it's possible for dyn_cast<> to fail, however, we choose
to use a slightly different API here, because it's awkward to
write
if (auto Casted = dyn_cast<U>(std::move(Orig))) {}
when Orig may end up not having been moved at all. So the
interface for dyn_cast is
if (auto Casted = unique_dyn_cast<U>(Orig)) {}
Where the inclusion of `unique` in the name of the cast operator
re-affirms that regardless of success of or fail of the casting,
exactly one of the input value and the return value will contain
a non-null result.
Differential Revision: https://reviews.llvm.org/D31890
llvm-svn: 300098
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
BitVector had methods for searching for the first and next
set bits, but it did not have analagous methods for finding
the first and next unset bits. This is useful when your ones
and zeros are grouped together and you want to iterate over
ranges of ones and zeros.
Differential Revision: https://reviews.llvm.org/D31802
llvm-svn: 299857
This shares detection logic with ARM(32), since AArch64 capable CPUs may
also run in 32-bit system mode.
We observe weird /proc/cpuinfo output for MSM8992 and MSM8994, where
they report all CPU cores as one single model, depending on which CPU
core the kernel is running on. As a workaround, we hardcode the known
CPU part name for these SoCs.
For big.LITTLE systems, this patch would only return the part name of
the first core (usually the little core). Proper support will be added
in a follow-up change.
Differential Revision: D31675
llvm-svn: 299458
When the ProcessAllSections flag (introduced in r204398) is set RuntimeDyld is
supposed to make a call to the client's memory manager for every section in each
object that is loaded. Due to some missing checks, this was not happening in all
cases. This patch adds the missing cases, and fixes the Orc unit test that
verifies correct behavior for ProcessAllSections (The unit test had been
silently bailing out due to an ordering issue: a change in the test order meant
that this unit-test was running before the native target was registered. This
issue has also been fixed in this patch).
This fixes <rdar://problem/22789965>
llvm-svn: 299449
Otherwise, yamlize in YAMLTraits.h might be wrongly defined.
This makes some AMDGPU tests fail when LLVM_LINK_LLVM_DYLIB is set.
Differential Revision: https://reviews.llvm.org/D30508
llvm-svn: 299415
This moves the isMask and isShiftedMask functions to be class methods. They now use the MathExtras.h function for single word size and leading/trailing zeros/ones or countPopulation for the multiword size. The previous implementation made multiple temorary memory allocations to do the bitwise arithmetic operations to match the MathExtras.h implementation.
Differential Revision: https://reviews.llvm.org/D31565
llvm-svn: 299362
This patch is one step to attempt to unify the main APInt interface and the tc functions used by APFloat.
This patch adds a WordType to APInt and uses that in all the tc functions. I've added temporary typedefs to APFloat to alias it to integerPart to keep the patch size down. I'll work on removing that in a future patch.
In future patches I hope to reuse the tc functions to implement some of the main APInt functionality.
I may remove APINT_ from BITS_PER_WORD and WORD_SIZE constants so that we don't have the repetitive APInt::APINT_ externally.
Differential Revision: https://reviews.llvm.org/D31523
llvm-svn: 299341
This removes a parameter from the routine that was responsible for a lot of the issue. It was a bit count that had to be set to the BitWidth of the APInt and would get passed to getLowBitsSet. This guaranteed the call to getLowBitsSet would create an all ones value. This was then compared to (V | (V-1)). So the only shifted masks we detected had to have the MSB set.
The one in tree user is a transform in InstCombine that never fires due to earlier transforms covering the case better. I've submitted a patch to remove it completely, but for now I've just adapted it to the new interface for isShiftedMask.
llvm-svn: 299273
Did you know that 0 is a shifted mask? But 0x0000ff00 and 0x000000ff aren't? At least we get 0xff000000 right.
I only see one usage of this function in the code base today and its in InstCombine. I think its protected against 0 being misreported as a mask. I guess we just don't have tests for the missed cases.
llvm-svn: 299187
This reverts r299062, which caused build failures on Windows.
It also reverts the attempts to fix the windows builds in r299064 and r299065.
The introduction of namespace llvm::sys::detail makes MSVC, and seemingly also
mingw, complain about ambiguity with the existing namespace llvm::detail.
E.g.:
C:\b\slave\sanitizer-windows\llvm\include\llvm/Support/MathExtras.h(184): error C2872: 'detail': ambiguous symbol
C:\b\slave\sanitizer-windows\llvm\include\llvm/Support/PointerLikeTypeTraits.h(31): note: could be 'llvm::detail'
C:\b\slave\sanitizer-windows\llvm\include\llvm/Support/Host.h(80): note: or 'llvm::sys::detail'
In r299064 and r299065 I tried to fix these ambiguities, based on the errors
reported in the log files. It seems however that the build stops early when
this kind of error is encountered, and many build-then-fix-iterations on
Windows may be needed to fix this. Therefore reverting r299062 for now to
get the build working again on Windows.
llvm-svn: 299066
This refactors getHostCPUName so that for the architectures that get the
host cpu info on linux from /proc/cpuinfo, the /proc/cpuinfo parsing
logic is present in the build, even if it wasn't built on a linux system
for that architecture.
Since the code is present in the build, we can then test that code also
on other systems, i.e. we don't need to have buildbots setup for all
architectures on linux to be able to test this. Instead, developers will
test this as part of the regression test run.
As an example, a few unit tests are added to test getHostCPUName for ARM
running linux. A unit test is preferred over a lit-based test, since the
expectation is that in the future, the functionality here will grow over
what can be tested with "llc -mcpu=native".
This is a preparation step to enable implementing the range of
improvements discussed on PR30516, such as adding AArch64 support,
support for big.LITTLE systems, reducing code duplication.
Differential Revision: https://reviews.llvm.org/D31236
llvm-svn: 299060
-ffp-contract=fast does not currently work with LTO because it's passed as a
TargetOption to the backend rather than in the IR. This adds it to
FastMathFlags.
This is toward fixing PR25721
Differential Revision: https://reviews.llvm.org/D31164
llvm-svn: 298939
It's possible (albeit strange) for $HOME to intentionally
point somewhere other than the user's home directory as
reported by the password database. Our test shouldn't fail
in this case. This patch updates the test to pull directly
from the password database before unsetting $HOME, rather
than comparing the return value of home_directory() to the
original value of the environment variable.
llvm-svn: 298514
This is something of an edge case, but when the $HOME environment
variable is not set, we can still look in the password database
to get the current user's home directory.
Added a test for this by getting the value of $HOME, then unsetting
it, then calling home_directory() and verifying that it succeeds
and that the value is the same as what we originally read from
the environment.
llvm-svn: 298513
StringMap's iterators did not support LLVM's
iterator_facade_base, which made it unusable in various
STL algorithms or with some of our range adapters.
This patch makes both StringMapConstIterator as well as
StringMapIterator support iterator_facade_base.
With this in place, it is easy to make an iterator adapter
that iterates over only keys, and whose value_type is
StringRef. So I add StringMapKeyIterator as well, and
provide the method StringMap::keys() that returns a
range that can be iterated.
Differential Revision: https://reviews.llvm.org/D31171
llvm-svn: 298436
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
In doing so, clean up the MD5 interface a little. Most
existing users only care about the lower 8 bytes of an MD5,
but for some users that care about the upper and lower,
there wasn't a good interface. Furthermore, consumers
of the MD5 checksum were required to handle endianness
details on their own, so it seems reasonable to abstract
this into a nicer interface that just gives you the right
value.
Differential Revision: https://reviews.llvm.org/D31105
llvm-svn: 298322
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
Previously which path syntax we supported dependend on what
platform we were compiling LLVM on. While this is normally
desirable, there are situations where we need to be able to
handle a path that we know was generated on a remote host.
Remote debugging, for example, or parsing debug info.
99% of the code in LLVM for handling paths was platform
agnostic and literally just a few branches were gated behind
pre-processor checks, so this changes those sites to use
runtime checks instead, and adds a flag to every path
API that allows one to override the host native syntax.
Differential Revision: https://reviews.llvm.org/D30858
llvm-svn: 298004
This change adds support for functions to set and get file permissions, in a similar manner to the C++17 permissions() function in <filesystem>. The setter uses chmod on Unix systems and SetFileAttributes on Windows, setting the permissions as passed in. The getter simply uses the existing status() function.
Prior to this change, status() would always return an unknown value for the permissions on a Windows file, making it impossible to test the new function on Windows. I have therefore added support for this as well. On Linux, prior to this change, the permissions included the file type, which should actually be accessed via a different member of the file_status class.
Note that on Windows, only the *_write permission bits have any affect - if any are set, the file is writable, and if not, the file is read-only. This is in common with what MSDN describes for their behaviour of std::filesystem::permissions(), and also what boost::filesystem does.
The motivation behind this change is so that we can easily test behaviour on read-only files in LLVM unit tests, but I am sure that others may find it useful in some situations.
Reviewers: zturner, amccarth, aaron.ballman
Differential Revision: https://reviews.llvm.org/D30736
llvm-svn: 297945
The idea is that the policy string fully specifies the policy and is portable
between clients.
Differential Revision: https://reviews.llvm.org/D31020
llvm-svn: 297927
Summary:
Previously, ParseCommandLineOptions returns false and ignores error messages
when IgnoreErrors. It would be useful to also return error messages if users
decide to check parsing result instead of having the program exit on error.
Reviewers: chandlerc, mehdi_amini, rnk
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30893
llvm-svn: 297810