This patch refactors the current implementation of
`ProcessLaunchCommandOptions` to be generated by TableGen.
The patch also renames the class to `CommandOptionsProcessLaunch` to
align better with the rest of the codebase style and moves it to
separate files.
Differential Review: https://reviews.llvm.org/D95059
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Combined with 'da98651 - Revert "DR2064:
decltype(E) is only a dependent', this change (5a391d3) caused verifier
errors when building Chromium. See https://crbug.com/1168494#c1 for a
reproducer.
Additionally it reverts changes that were dependent on this one, see
below.
> Following up on PR48517, fix handling of template arguments that refer
> to dependent declarations.
>
> Treat an id-expression that names a local variable in a templated
> function as being instantiation-dependent.
>
> This addresses a language defect whereby a reference to a dependent
> declaration can be formed without any construct being value-dependent.
> Fixing that through value-dependence turns out to be problematic, so
> instead this patch takes the approach (proposed on the core reflector)
> of allowing the use of pointers or references to (but not values of)
> dependent declarations inside value-dependent expressions, and instead
> treating template arguments as dependent if they evaluate to a constant
> involving such dependent declarations.
>
> This ends up affecting a bunch of OpenMP tests, due to OpenMP
> imprecisely handling instantiation-dependent constructs, bailing out
> early instead of processing dependent constructs to the extent possible
> when handling the template.
>
> Previously committed as 8c1f2d15b8, and
> reverted because a dependency commit was reverted.
This reverts commit 5a391d38ac.
It also restores clang/test/SemaCXX/coroutines.cpp to its state before
da986511fb.
Revert "[c++20] P1907R1: Support for generalized non-type template arguments of scalar type."
> Previously committed as 9e08e51a20, and
> reverted because a dependency commit was reverted. This incorporates the
> following follow-on commits that were also reverted:
>
> 7e84aa1b81 by Simon Pilgrim
> ed13d8c667 by me
> 95c7b6cadb by Sam McCall
> 430d5d8429 by Dave Zarzycki
This reverts commit 4b574008ae.
Revert "[msabi] Mangle a template argument referring to array-to-pointer decay"
> [msabi] Mangle a template argument referring to array-to-pointer decay
> applied to an array the same as the array itself.
>
> This follows MS ABI, and corrects a regression from the implementation
> of generalized non-type template parameters, where we "forgot" how to
> mangle this case.
This reverts commit 18e093faf7.
Apparently the sphinx version on the server doesn't place <p> tags in the
table cells, so the previous fix from commit 7fce3b240b
didn't fix the bug for that sphinx version. Just expand the CSS workaround
to all <td> tags.
This patch implements a filter that post-processes some of the generated RST sources
of the Python API docs. I mainly want to avoid two things:
1. Filter out all the inheritance boilerplate that just keeps mentioning for
every class that it inherits from the builtin 'object'. There is no inheritance
in the SB API.
2. More importantly, removes the SWIG generated `thisown` attribute from the
public documentation. I don't think we want users to mess with that attribute
and this is probably causing more confusion than it would help anyone. It also
makes the documentation for some smaller classes more verbose than necessary.
This patch just uses the sphinx event for reading source and removes the parts
that we don't want in documentation.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94967
The tables in the new LLDB documentation currently are less wide than their
contents. The reason for that seems to be the `-webkit-hyphens: auto` property
that sphinx is setting for all `p` tags. The `p` tags in the generated Python
documentation seem to trigger some Safari layout issue, so Safari is calculating
the cell width to be smaller than it should be (which ends up looking like this
{F15104344} ).
This patch just sets that property back to the browser default `manual`. Not
sure if that's the proper workaround, but I clicked around on the website with
the changed CSS and nothing looked funny (which is I believe how webdev unit
testing works).
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94991
This test is flakey on Windows and on failure it hangs causing the test suite to fail and future builds (on the buildbot, especially) to fail because they cannot re-write the files that are currently in use
This is mostly SEO so that the new API can take over the old API when people
search for the different SB* classes. Sadly epydoc decided to throw in a -class
prefix behind all the class file names, so we can't just overwrite the old files
with the newly generated ones.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94900
Enums and constants are currently missing in the new LLDB Python API docs.
In theory we could just let them be autogenerated like the SB API classes, but sadly the generated documentation
suffers from a bunch of problems. Most of these problems come from the way SWIG is representing enums, which is
done by translating every single enum case into its own constant. This has a bunch of nasty effects:
* Because SWIG throws away the enum types, we can't actually reference the enum type itself in the API. Also because automodapi is impossible to script, this can't be fixed in post (at least without running like sed over the output files).
* The lack of enum types also causes that every enum *case* has its own full doc page. Having a full doc page that just shows a single enum case is pointless and it really slows down sphinx.
* There is no SWIG code for the enums, so there is also no place to write documentation strings for them. Also there is no support for copying the doxygen strings (which would be in the wrong format, but better than nothing) for enums (let alone our defines), so we can't really document all this code.
* Because the enum cases are just forwards to the native lldb module (which we mock), automodapi actually takes the `Mock` docstrings and adds it to every single enum case.
I don't see any way to solve this via automodapi or SWIG. The most reasonable way to solve this is IMHO to write a simple Clang tool
that just parses our enum/constant headers and emits an *.rst file that we check in. This way we can do all the LLDB-specific enum case and constant
grouping that we need to make a readable documentation page.
As we're without any real documentation until I get around to write that tool, I wrote a doc page for the enums/constants as a stop gap measure.
Most of this is done by just grepping our enum header and then manually cleaning up all the artifacts and copying the few doc strings we have.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94959
cmake_minimum_required(VERSION) calls cmake_policy(VERSION),
which sets all policies up to VERSION to NEW.
LLVM started requiring CMake 3.13 last year, so we can remove
a bunch of code setting policies prior to 3.13 to NEW as it
no longer has any effect.
Reviewed By: phosek, #libunwind, #libc, #libc_abi, ldionne
Differential Revision: https://reviews.llvm.org/D94374
This patch adds a new test case which depends on AArch64 SVE support and
dynamic resize capability enabled. It created two seperate threads which
have different values of sve registers and SVE vector granule at various
points during execution.
We test that LLDB is doing the size and offset updates properly for all
of the threads including the main thread and when we VG is updated using
prctl call or by 'register write vg' command the appropriate changes are
also update in register infos.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82866
This patch builds on previously submitted SVE patches regarding expedited
register set and per thread register infos. (D82853 D82855 and D82857)
We need to resize SVE register based on value received in expedited list.
Also we need to resize SVE registers when we write vg register using
register write vg command. The resize will result in a updated offset
for all of fpr and sve register set. This offset will be configured
in native register context by RegisterInfoInterface and will also be
be updated on client side in GDBRemoteRegisterContext.
A follow up patch will provide a API test to verify this change.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82863
The test couldn't find lldb-server as it's path was being overridden by
LLDB_DEBUGSERVER_PATH environment variable (pointing to debugserver).
This test should always use lldb-server, as it tests its platform
capabilities.
There's no need for the environment override, as lldb-server tests
should test the executable they just built, so I just remote the
override capability.
When a command option does not have a short version
(e.g. -f for --file), we use an arbitrary value in the
short_option field to mark it as invalid.
(though this value is unqiue to be used later for other
things)
We check that this short option is valid to print using
llvm::isPrint. This implicitly casts our int to char,
meaning we check the last char of any short_option value.
Since the arbitrary value we chose for these options is
some shortened hex version of the name, this returned true
even for invalid values.
Since llvm::isPrint returns true we later call std::islower
and/or std::isupper on the short_option value. (the int)
Calling these functions with something that cannot be validly
converted to unsigned char is undefined. Somehow we got/get
away with this but for me compiling with g++-9 I got a crash
for "help memory read".
The other command that uses this is "target variable" but that
didn't crash for unknown reasons.
Checking that short_option can fit into an unsigned char before
we call llvm::isPrint means we will not attempt to call islower/upper
on these options since we have no reason to print them.
This also fixes bogus short options being shown for "memory read"
and target variable.
For "target variable", before:
-e <filename> ( --file <filename> )
-b <filename> ( --shlib <filename> )
After:
--file <filename>
--shlib <filename>
(note that the bogus short options are just the bottom byte of our
arbitrary short_option value)
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D94917
Previously committed as 9e08e51a20, and
reverted because a dependency commit was reverted. This incorporates the
following follow-on commits that were also reverted:
7e84aa1b81 by Simon Pilgrim
ed13d8c667 by me
95c7b6cadb by Sam McCall
430d5d8429 by Dave Zarzycki
sphinx processes text in backticks depending on what 'role' it has (e.g.,
`:code:\`blub\`` -> role is `code`). If no role is provided, the default role is
taken which is right now using the default value of `content`. `content` only
really makes the text cursive which isn't really useful for anything right now.
Sphinx recommends using the `any` role by default [1] as that turns text in
backticks without an explicit roles into some kind of smart reference. If we did
this in LLDB, then we could just reference SB API classes by doing `\`SBValue\``
instead of typing out the rather verbose `:py:class:`/`:py:func:`/... role
before each reference. This would be especially nice when writing the SB API
docs itself as we constantly have to reference other classes.
[1] https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-any
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94899
Right now we're using the 'content' role as default which will just render
these things as cursive (which isn't really useful for code examples). It also
prevents us from assigning a more useful default role in the future.
Mostly just making sure the indentation is right (SBDebugger had 0 spaces
as it was still plain text, the others had too much indentation or other
minor issues).
The first line of the doc string ends up on the SB API class summary at
the root page of the Python API web page of LLDB. Currently many of the
descriptions are missing or are several lines which makes the table really
hard to read.
This just adds the missing docstrings where possible and fixes the formatting
where necessary.
The build server should now have the missing dependencies.
Original summary:
Currently LLDB uses epydoc to generate the Python API reference for the website.
epydoc however is unmaintained since more than a decade and no longer works with
Python 3. Also whatever setup we had once for generating the documentation on
the website server no longer seems to work, so the current website documentation
has been stale since more than a year.
This patch replaces epydoc with sphinx and its automodapi plugin that can
generate Python API references. LLVM already uses sphinx for the rest of the
documentation, so this way we are more consistent with the rest of LLVM. The
only new dependency is the automodapi plugin for sphinx.
This patch effectively does the following things:
* Remove the epydoc code.
* Make a new dummy Python API page in our website that just calls the Sphinx
command for generated the API documentation.
* Add a mock _lldb module that is only used when generating the Python API.
This way we don't have to build all of LLDB to generate the API reference.
Some notes:
* The long list of skips is necessary due to boilerplate functions that SWIG
is generating. Sadly automodapi is not really scriptable from what I can see,
so we have to blacklist this stuff manually.
* The .gitignore change because automodapi wants a subfolder of our
documentation directory to place generated documentation files there. The path
is also what is used on the website, so we can't really workaround this
(without copying the whole `docs` dir somewhere else when we build).
* We have to use environment variables to pass our build path to our sphinx
configuration. Sphinx doesn't support passing variables onto that script.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94489
This translates most of the old ASCII art in our documentation to the
equivalent in restructured text (which the new version of the LLDB docs
is using).
Currently LLDB uses epydoc to generate the Python API reference for the website.
epydoc however is unmaintained since more than a decade and no longer works with
Python 3. Also whatever setup we had once for generating the documentation on
the website server no longer seems to work, so the current website documentation
has been stale since more than a year.
This patch replaces epydoc with sphinx and its automodapi plugin that can
generate Python API references. LLVM already uses sphinx for the rest of the
documentation, so this way we are more consistent with the rest of LLVM. The
only new dependency is the automodapi plugin for sphinx.
This patch effectively does the following things:
* Remove the epydoc code.
* Make a new dummy Python API page in our website that just calls the Sphinx
command for generated the API documentation.
* Add a mock _lldb module that is only used when generating the Python API.
This way we don't have to build all of LLDB to generate the API reference.
Some notes:
* The long list of skips is necessary due to boilerplate functions that SWIG
is generating. Sadly automodapi is not really scriptable from what I can see,
so we have to blacklist this stuff manually.
* The .gitignore change because automodapi wants a subfolder of our
documentation directory to place generated documentation files there. The path
is also what is used on the website, so we can't really workaround this
(without copying the whole `docs` dir somewhere else when we build).
* We have to use environment variables to pass our build path to our sphinx
configuration. Sphinx doesn't support passing variables onto that script.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94489
This patch pull offset calculation logic out of DynamicRegisterInfo::Finalize
into a separate function. We are going to call this function whenever we
update SVE register sizes.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D94008
In gdb-remote process we have register infos defind as a refernce object of
GDBRemoteDynamicRegisterInfo class. In past register infos have remained
constant througout the life time of a process.
This has changed after AArch64 SVE support where register infos will have
per-thread configuration. SVE registers will have per-thread size and can
be updated while running. This patch aims to build up for that support by
changing GDBRemoteDynamicRegisterInfo reference to a shared pointer deinfed
per-thread.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82857
When a program maps one of its own modules for reading, and then
crashes, breakpad can emit two entries for that module in the
ModuleList. We have logic to identify this case by checking permissions
on mapped memory regions and report just the module with an executable
region. As currently written, though, the check is asymmetric -- the
entry with the executable region must be the second one encountered for
the preference to kick in.
This change makes the logic symmetric, so that the first-encountered
module will similarly be preferred if it has an executable region but
the second-encountered module does not. This happens for example when
the module in question is the executable itself, which breakpad likes to
report first -- we need to ignore the other entry for that module when
we see it later, even though it may be mapped at a lower virtual
address.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D94629
Linux systems can be configured (and most of them are configured that
way) to disable attaching to unrelated processes, /unless/ those
processes explicitly allow that.
Our test inferiors do that by explicitly calling prctl(PR_SET_PTRACER,
PR_SET_PTRACER_ANY) (a.k.a., lldb_enable_attach). This requires
additional synchronization to ensure that the test does not attempt
attach before that statement is executed.
This is working fine (albeit cumbersome) for most tests but
TestGdbRemoteAttachWait is special in that it wants to start the
inferior _after_ issuing the attach request. This means that the usual
synchronization method does not work.
This patch introduces a different solution -- enable attaching in the
test harness, before the process is launched. Besides fixing this
problem, this is also better because it avoids the need to add special
code to each attach test (which is a common error).
One gotcha here is that it won't work for remote test suites, as we
don't control launching there. However, we could add a similar option to
lldb-platform, or require that lldb-platform itself is started with
attaching enabled. At that point we could delete all lldb_enable_attach
logic.
The test was marked as remote-only, which means it was run ~never, and
accumulated various problems. This commit modifies the test to run
locally and includes a couple of other fixes necessary to make it run:
- moves the "invoke" method into the "Base" test class
- adds []'s around the IP address in a couple more places to make things
work with IPv6
The test is now marked as skipped when running the remote test suite. It
would be possible to make it run both locally and remotely, but this
would require writing a lot special logic for the remote case, and that
is not worth it.
This commit vAttachWait in lldb-server, so --waitfor can be used on
Linux
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D93895
The way this test is structured right now, I set a breakpoint on
the instruction before the __builtin_trap. It hits the breakpoint,
disables the breakpoint, and instruction steps. This hits the
builtin_trap instruction which debugserver (on arm64) now advances
to the next instruction and reports that address to lldb. lldb
doesn't recognize this as a proper response to the instruction
step and continues executing until the next trap, and the test fails.
Debugging app launch/attach failures can be difficult because of
all of the messages logged to the console on a darwin system;
emitting specific messages around critical API calls can make it
easier to narrow the search for the console messages related to
the failure.
<rdar://problem/67220442>
Differential revision: https://reviews.llvm.org/D94357
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
This test seems to be broken there (which is not totally surprising as
this functionality was never used on windows). Disable the test while I
investigate.
- s/createUniqueFile/createUniquePath -- we don't want to create the file,
just the file name
- s/data()/str().c_str()/ -- paths given to system apis must be
null-terminated
- Remove unused plists that were referenced (but unused) by Xcode.
- Move all debugserver plists unders tools/debugserver/resources.
- Add the ability to distinguish between com.apple.security.cs.debugger
and com.apple.private.cs.debugger.
rdar://66082043
Differential revision: https://reviews.llvm.org/D94320
Remove the stale LLDB-Info.plist which was only used by TestHelp.py. The
latter would try to parse the version number from the plist and use that
to verify the version in the help output. Of course this never matched
so it would fall back to matching any arbitrary version.
This patch does *not* change the real LLDB-Info.plist.in file which is
used for the LLDB Framework.
Bump the required SWIG version to 3. If my memory serves me well we last
bumped the required SWIG version to 2 for Python 3. At that time SWIG 3
had already been around for a while so everyone I know was already using
that.
It appears that SWIG 3 is the only version that officially supports
C++11 which we're using in the typemap. SWIG 3 was released in 2014 so I
think it's reasonable to make that the minimum required version.
https://bugs.llvm.org/show_bug.cgi?id=48685
Differential revision: https://reviews.llvm.org/D94244
Replace uses of GetModuleAtIndexUnlocked and
GetModulePointerAtIndexUnlocked with the ModuleIterable and
ModuleIterableNoLocking where applicable.
Differential revision: https://reviews.llvm.org/D94271