The error messages in tests are far better when a test fails if the test
is written using ASSERT_/EXPECT_<operator>(A, B) rather than
ASSERT_/EXPECT_TRUE(A <operator> B).
This commit updates all of llvm/unittests/Support to use these macros
where possible.
This change has not been possible in:
- llvm/unittests/Support/FSUniqueIDTest.cpp - due to not overloading
operators beyond ==, != and <.
- llvm/unittests/Support/BranchProbabilityTest.cpp - where the unchanged
tests are of the operator overloads themselves.
There are other possibilities of this conversion not being valid, which
have not applied in these tests, as they do not use NULL (they use
nullptr), and they do not use const char* (they use std::string or
StringRef).
Reviewed By: mubashar_
Differential Revision: https://reviews.llvm.org/D117319
Most of `MemoryBuffer` interfaces expose a `RequiresNullTerminator` parameter that's being used to:
* determine how to open a file (`mmap` vs `open`),
* assert newly initialized buffer indeed has an implicit null terminator.
This patch adds the paramater to the `SmallVectorMemoryBuffer` constructors, meaning:
* null terminator can now be added to `SmallVector`s that didn't have one before,
* `SmallVectors` that had a null terminator before keep it even after the move.
In line with existing code, the new parameter is defaulted to `true`. This patch makes sure all calls to the `SmallVectorMemoryBuffer` constructor set it to `false` to preserve the current semantics.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D115331
As preparation for changing `LineIterator` to work with `MemoryBufferRef`:
- Add an `operator==` that uses buffer pointer identity to ensure two buffers
are equivalent.
- Split out `MemoryBufferRef.h`, to avoid polluting `LineIterator.h` includers
with everything from `MemoryBuffer.h`. This also means moving the
`MemoryBuffer` constructor to a source file.
Differential Revision: https://reviews.llvm.org/D89279
This is needed to fix the reason
0a2be46cfd (Modules: Invalidate out-of-date PCMs as they're
discovered) and 5b44a4b07fc1d ([modules] Do not cache invalid state for
modules that we attempted to load.) were reverted.
These patches changed Clang to use `isVolatile` when loading modules.
This had the side effect of not using mmap when loading modules, and
thus greatly increased memory usage.
The reason it wasn't using mmap is because `MemoryBuffer` plays some
games with file size when you request null termination, and it has to
disable these when `isVolatile` is set as the size may change by the
time it's mmapped. Clang by default passes
`RequiresNullTerminator = true`, and `shouldUseMmap` ignored if
`RequiresNullTerminator` was even requested.
This patch adds `RequiresNullTerminator` to the `FileManager` interface
so Clang can use it when loading modules, and changes `shouldUseMmap` to
only take volatility into account if `RequiresNullTerminator` is true.
This is fine as both `mmap` and a `read` loop are vulnerable to
modifying the file while reading, but are immune to the rename Clang
does when replacing a module file.
Differential Revision: https://reviews.llvm.org/D77772
Summary:
There was a subtle, but pretty important difference between the Slice
and regular versions of this function. The Slice function was
zero-initializing the rest of the buffer when the read syscall returned
less bytes than expected, while the regular function did not.
This patch removes the inconsistency by making both functions *not*
zero-initialize the buffer. The zeroing code is moved to the
MemoryBuffer class, which is currently the only user of this code. This
makes the API more consistent, and the code shorter.
While in there, I also refactor the functions to return the number of
bytes through the regular return value (via Expected<size_t>) instead of
a separate by-ref argument.
Reviewers: aganea, rnk
Subscribers: kristina, Bigcheese, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66471
llvm-svn: 369627
This recommits r368977, which was reverted in r369027 due to test
failures in lldb. The cause of this was different behavior of
readNativeFileSlice on windows and unix. These have been addressed in
r369269.
The original commit message was:
In case the function was called with a desired read size *and* the file
was not an "mmap()" candidate, the function was falling back to a
"pread()", but it was failing to check the result of that system call.
This meant that the function would return "success" even though the read
operation failed, and it returned a buffer full of uninitialized memory.
Reviewers: rnk, dblaikie
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66224
llvm-svn: 369370
Summary:
In case the function was called with a desired read size *and* the file
was not an "mmap()" candidate, the function was falling back to a
"pread()", but it was failing to check the result of that system call.
This meant that the function would return "success" even though the read
operation failed, and it returned a buffer full of uninitialized memory.
Reviewers: rnk, dblaikie
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66224
llvm-svn: 368977
Summary:
On Windows, Posix integer file descriptors are a compatibility layer
over native file handles provided by the C runtime. There is a hard
limit on the maximum number of file descriptors that a process can open,
and the limit is 8192. LLD typically doesn't run into this limit because
it opens input files, maps them into memory, and then immediately closes
the file descriptor. This prevents it from running out of FDs.
For various reasons, I'd like to open handles to every input file and
keep them open during linking. That requires migrating MemoryBuffer over
to taking open native file handles instead of integer FDs.
Reviewers: aganea, Bigcheese
Reviewed By: aganea
Subscribers: smeenai, silvas, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, llvm-commits, zturner
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63453
llvm-svn: 365588
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This is like MemoryBuffer (read-only) and WritableMemoryBuffer
(writable private), but where the underlying file can be modified
after writing. This is useful when you want to open a file, make
some targeted edits, and then write it back out.
Differential Revision: https://reviews.llvm.org/D44230
llvm-svn: 327057
Summary:
The idea is that it would replace
(non-Writable)MemoryBuffer::getNewMemBuffer, which is quite useless
unless you const_cast its contents to write to it (which all (both)
callers of this function were doing). This patch also fixes one of the usages in
COFFWriter. After fixing the other usage in clang, I plan to delete the old
function.
Reviewers: dblaikie, Bigcheese
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41540
llvm-svn: 322094
There is nothing useful that can be done with a read-only uninitialized
buffer without const_casting its contents to initialize it. A better
solution is to obtain a writable buffer
(WritableMemoryBuffer::getNewUninitMemBuffer), and then convert it to a
read-only buffer after initialization. All callers of this function have
already been updated to do this, so this function is now unused.
llvm-svn: 321257
Summary:
The motivation here is LLDB, where we need to fixup relocations in
mmapped files before their contents can be read correctly. The
MemoryBuffer class does exactly what we need, *except* that it maps the
file in read-only mode.
WritableMemoryBuffer reuses the existing machinery for opening and
mmapping a file. The only difference is in the argument to the
mapped_file_region constructor -- we create a private copy-on-write
mapping, so that we can make changes to the mapped data, but the changes
aren't carried over to the underlying file.
This patch is based on an initial version by Zachary Turner.
Reviewers: mehdi_amini, rnk, rafael, dblaikie, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40291
llvm-svn: 321071
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
mach-o supports "fat" files which are a header/table-of-contents followed by a
concatenation of mach-o files built for different architectures. Currently,
MemoryBuffer has no easy way to map a subrange (slice) of a file which lld
will need to select a mach-o slice of a fat file. The new function provides
an easy way to map a slice of a file into a MemoryBuffer. Test case included.
llvm-svn: 219260
This will allow external callers of these functions to switch over time
rather than forcing a breaking change all a once. These particular
functions were determined by building clang/lld/lldb.
llvm-svn: 202959
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
The main observation is that we never need both the filesize and the map size.
When mapping a slice of a file, it doesn't make sense to request a null
terminator and that would be the only case where the filesize would be used.
There are other cleanups that should be done in this area:
* A client should not have to pass the size (even an explicit -1) to say if
it wants a null terminator or not, so we should probably swap the argument
order.
* The default should be to not require a null terminator. Very few clients
require this, but many end up asking for it just because it is the default.
llvm-svn: 186984