Extend DummySyntheticProvider to actually use debug-info vended children as the source of information
Make Python synthetic children either be valid, or fallback to the dummy, like their C++ counterparts
This allows LLDB to actually stop bailing out upon encountering an invalid synthetic children provider front-end, and still displaying the non synthetized ivar info
llvm-svn: 192741
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
This radar extends the notion of one-liner summaries to automagically apply in a few interesting cases
More specifically, this checkin changes the printout of ValueObjects to print on one-line (as if type summary add -c had been applied) iff:
this ValueObject does not have a summary
its children have no synthetic children
its children are not a non-empty base class without a summary
its children do not have a summary that asks for children to show up
the aggregate length of all the names of all the children is <= 50 characters
you did not ask to see the types during a printout
your pointer depth is 0
This is meant to simplify the way LLDB shows data on screen for small structs and similarly compact data types (e.g. std::pair<int,int> anyone?)
Feedback is especially welcome on how the feature feels and corner cases where we should apply this printout and don't (or viceversa, we are applying it when we shouldn't be)
llvm-svn: 191996
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
SVN r189964 provided a sample Python script to inspect unordered(multi){set|map} with synthetic children, contribued by Jared Grubb
This checkin converts that sample script to a C++ provider built into LLDB
A test case is also provided
llvm-svn: 190564
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
Also, print the cache hits statistics if the log is in debugging mode vs. LLDB being a debug build - this should make it easier to gather useful metrics on cache success rate for real users
llvm-svn: 184900
Modifying our data formatters matching algorithm to ensure that "const X*" is treated as equivalent to "X*"
Also, a couple improvements to the "lldb types" logging
llvm-svn: 184215
Add support for half-floats, as specified by IEEE-754-2008
With this checkin, you can now say:
(lldb) x/7hf foo
to read 7 half-floats at address foo
llvm-svn: 183716
Adding data formatters for std::set, std::multiset and std::multimap for libc++
The underlying data structure is the same as std::map, so this change is very minimal and mostly consists of test cases
llvm-svn: 183323
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
Make a summary format for libc++ STL containers that shows the number of items as before, but also shows the pointer value for pointer-to-container
llvm-svn: 181236
Improvements to the std::map data formatter to recognize when invalid memory is being explored and bail out instead of looping for a potentially very long time
llvm-svn: 181044
The user was trying to obtain the address-of an std::vector and the experience was more painful than necessary because data formatters were kicking in for vector* objects
We got this right for libc++ - we should get it right for libstdc++ too
llvm-svn: 180219
This checkin reverts NSString to the old behavior when appropriate, and cleans up the syntax to call the UTF Reader&Dumper function
Incidentally, add a "-d" command-line flag to redo.py with the same semantics as "-d" in dotest.py
llvm-svn: 180141
This prevents unbounded reads (i.e. reads of GetMaximumSizeOfStringSummary() bytes)
from causing test failures (i.e. due to ptrace EIO or EFAULT on Linux).
Note that ReadCStringFromMemory is marked as deprecated because the loop that calls
ReadMemory does not continue until the string has been completely read.
The expected behavior is to read until until max_bytes or a null terminator.
Note: As discussed on lldb-dev, further testing will be performed with ReadStringFromMemory
before further changes are made for users of ReadCStringFromMemory.
Thanks to Enrico, Matt and Andy for their review feedback.
llvm-svn: 179857
Introducing a negative cache for ObjCLanguageRuntime::LookupInCompleteClassCache()
This helps speed up the (common) case of us looking for classes that are hidden deep within Cocoa internals and repeatedly failing at finding type information for them.
In order for this to work, we need to clean this cache whenever debug information is added. A new symbols loaded event is added that is triggered with add-dsym (before modules loaded would be triggered for both adding modules and adding symbols).
Interested parties can register for this event. Internally, we make sure to clean the negative cache whenever symbols are added.
Lastly, ClassDescriptor::IsTagged() has been refactored to GetTaggedPointerInfo() that also (optionally) returns info and value bits. In this way, data formatters can share tagged pointer code instead of duplicating the required arithmetic.
llvm-svn: 178897
The __NSArrayI synthetic children provider was running expressions to generate children, which is inefficient for large amounts of data
Reimplementing to use a faster algorithm
llvm-svn: 178729
Reimplemented the NSDictionary synthetic children provider for added performance.
Instead of generating pairs by running an expression, we now create a pair type using clang-level APIs and fill in a buffer with the pointers to key and value
This strategy takes the time required to dump a 10k items __NSDictionaryM from ~45s to <4s
llvm-svn: 178601
Fixing a bug where LLDB was not handling correctly CFStrings that have an explicit length but no NULL terminator
The data formatter was showing garbled data as part of the summary
The fix is to explicitly figure out the explicit length if we need to (bitfields tell us when that is the case) and use that as a size delimiter
llvm-svn: 178577
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
The algorithm to access an item in a __NSArrayM was not reacting properly to deletions
The fix is to use a smarter formula that accounts for items shifting and the resulting notion of offsets in the table
llvm-svn: 178076
- Making an error message more consistent
- Ensuring the element size is not zero before using it in a modulus
- Properly using target settings to cap the std::list element count
- Removing spurious element size calculations that were unused
- Removing spurious capping in std::map
llvm-svn: 178057
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Adding data formatters for iterators for std::map and std::vector (both libc++ and libstdcpp)
This does not include reverse iterators since they are both trickier (due to requirements the standard imposes on them) and much less useful
llvm-svn: 175787
Split some NS* formatters in their own source files
Refactored a utility function for the C++ formatters to use
Fixed the skip-summary test case to be explicit about requiring libstdc++ for operation
llvm-svn: 175323
The SEL data formatter was working hard to ensure that pointers-to-selectors could be formatted by the same block of code. In that effort, we were taking the address-of a SEL.
This operation fails when the SEL lives in a register, and was causing problems.
The formatter has been fixed to work correctly without assuming &selector will be a valid object.
llvm-svn: 175227
Synthetic children and summary for std::vector<bool> (for both libcxx and libstdcpp).
std::vector<bool> is a special case and is custom-implemented to be a vector of bits, which means we failed to handle it with the standard std::vector<T> formatter.
This checkin provides custom formatters that work correctly
llvm-svn: 174333
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728