Commit Graph

909 Commits

Author SHA1 Message Date
David Green b535aa405a [ARM] Use reduction intrinsics for larger than legal reductions
The codegen for splitting a llvm.vector.reduction intrinsic into parts
will be better than the codegen for the generic reductions. This will
only directly effect when vectorization factors are specified by the
user.

Also added tests to make sure the codegen for larger reductions is OK.

Differential Revision: https://reviews.llvm.org/D72257
2020-01-24 17:07:24 +00:00
Florian Hahn f14f2a8568 [LV] Fix predication for branches with matching true and false succs.
Currently due to the edge caching, we create wrong predicates for
branches with matching true and false successors. We will cache the
condition for the edge from the true successor, and then lookup the same
edge (src and dst are the same) for the edge to the false successor.

If both successors match, the condition should always be true. At the
moment, we cannot really create constant VPValues, but we can just
create a true condition as X | !X. Later passes will clean that up.

Fixes PR44488.

Reviewers: rengolin, hsaito, fhahn, Ayal, dorit, gilr

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D73079
2020-01-22 18:34:11 -08:00
Florian Hahn 39ae86ab72 [AArch64TTI] AArch64 supports NT vector stores through STNP.
This patch adds a custom implementation of isLegalNTStore to AArch64TTI
that supports vector types that can be directly stored by STNP. Note
that the implementation may not catch all valid cases (e.g. because the
vector is a multiple of 256 and could be broken down to multiple valid 256 bit
stores), but it is good enough for LV to vectorize loops with NT stores,
as LV only passes in a vector with 2 elements to check. LV seems to also
be the only user of isLegalNTStore.

We should also do the same for NT loads, but before that we need to
ensure that we properly lower LDNP of vectors, similar to D72919.

Reviewers: dmgreen, samparker, t.p.northover, ab

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D73158
2020-01-22 16:45:24 -08:00
Evgeniy Brevnov af7e158872 [LV] Vectorizer should adjust trip count in profile information
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.

Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov

Reviewed By: Ayal, DaniilSuchkov

Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67905
2020-01-20 18:36:28 +07:00
Francesco Petrogalli 66c120f025 [VectorUtils] Rework the Vector Function Database (VFDatabase).
Summary:
This commits is a rework of the patch in
https://reviews.llvm.org/D67572.

The rework was requested to prevent out-of-tree performance regression
when vectorizing out-of-tree IR intrinsics. The vectorization of such
intrinsics is enquired via the static function `isTLIScalarize`. For
detail see the discussion in https://reviews.llvm.org/D67572.

Reviewers: uabelho, fhahn, sdesmalen

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72734
2020-01-16 15:08:26 +00:00
Florian Hahn 23c113802e [LV] Allow assume calls in predicated blocks.
The assume intrinsic is intentionally marked as may reading/writing
memory, to avoid passes moving them around. When flattening the CFG
for predicated blocks, we have to drop the assume calls, as they
are control-flow dependent.

There are some cases where we can do better (when control flow is
preserved), but that is follow-up work.

Fixes PR43620.

Reviewers: hsaito, rengolin, dcaballe, Ayal

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D68814
2020-01-16 10:11:35 +00:00
Florian Hahn 59ac44b3c1 [LV] Make X86/assume.ll X86 independent (NFC).
The test does not check anything X86 specific. This is a preparation for
the D68814.
2020-01-16 10:01:35 +00:00
Momchil Velikov 173b711e83 [ARM][MVE] MVE-I should not be disabled by -mfpu=none
Architecturally, it's allowed to have MVE-I without an FPU, thus
-mfpu=none should not disable MVE-I, or moves to/from FP-registers.

This patch removes `+/-fpregs` from features unconditionally added to
target feature list, depending on FPU and moves the logic to Clang
driver, where the negative form (`-fpregs`) is conditionally added to
the target features list for the cases of `-mfloat-abi=soft`, or
`-mfpu=none` without either `+mve` or `+mve.fp`. Only the negative
form is added by the driver, the positive one is derived from other
features in the backend.

Differential Revision: https://reviews.llvm.org/D71843
2020-01-09 14:03:25 +00:00
Sjoerd Meijer 8f1887456a [LV] Still vectorise when tail-folding can't find a primary inducation variable
This addresses a vectorisation regression for tail-folded loops that are
counting down, e.g. loops as simple as this:

  void foo(char *A, char *B, char *C, uint32_t N) {
    while (N > 0) {
      *C++ = *A++ + *B++;
       N--;
    }
  }

These are loops that can be vectorised, but when tail-folding is requested, it
can't find a primary induction variable which we do need for predicating the
loop. As a result, the loop isn't vectorised at all, which it is able to do
when tail-folding is not attempted. So, this adds a check for the primary
induction variable where we decide how to lower the scalar epilogue. I.e., when
there isn't a primary induction variable, a scalar epilogue loop is allowed
(i.e. don't request tail-folding) so that vectorisation could still be
triggered.

Having this check for the primary induction variable make sense anyway, and in
addition, in a follow-up of this I will look into discovering earlier the
primary induction variable for counting down loops, so that this can also be
tail-folded.

Differential revision: https://reviews.llvm.org/D72324
2020-01-09 09:14:00 +00:00
Matt Arsenault f26ed6e47c llc: Change behavior of -mcpu with existing attribute
Don't overwrite existing target-cpu attributes.

I've often found the replacement behavior annoying, and this is
inconsistent with how the fast math command line flags interact with
the function attributes.

Does not yet change target-features, since I think that should behave
as a concatenation.
2020-01-07 10:10:25 -05:00
Jinsong Ji e29a2e6be4 [PowerPC][LoopVectorize] Extend getRegisterClassForType to consider double and other floating point type
In https://reviews.llvm.org/D67148, we use isFloatTy to test floating
point type, otherwise we return GPRRC.
So 'double' will be classified as GPRRC, which is not accurate.

This patch covers other floating point types.

Reviewed By: #powerpc, nemanjai

Differential Revision: https://reviews.llvm.org/D71946
2020-01-06 18:44:59 +00:00
Jinsong Ji 1d7990228f [PowerPC][LoopVectorize] Add tests for fp128 and fp16
Add two tests to reg-usage.ll
2020-01-03 21:39:29 +00:00
Jinsong Ji e8c5600de8 [PowerPC][LoopVectorize]Add floating point reg usage test
Copied two tests from x86 to test floating point reg usage.
2019-12-27 20:37:23 +00:00
Fangrui Song a36ddf0aa9 Migrate function attribute "no-frame-pointer-elim"="false" to "frame-pointer"="none" as cleanups after D56351 2019-12-24 16:27:51 -08:00
Fangrui Song eb16435b5e Migrate function attribute "no-frame-pointer-elim-non-leaf" to "frame-pointer"="non-leaf" as cleanups after D56351 2019-12-24 16:05:15 -08:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Ayal Zaks e498be5738 [LV] Strip wrap flags from vectorized reductions
A sequence of additions or multiplications that is known not to wrap, may wrap
if it's order is changed (i.e., reassociated). Therefore when vectorizing
integer sum or product reductions, their no-wrap flags need to be removed.

Fixes PR43828

Patch by Denis Antrushin

Differential Revision: https://reviews.llvm.org/D69563
2019-12-20 14:48:53 +02:00
Nemanja Ivanovic a5da8d90da [PowerPC] Add missing legalization for vector BSWAP
We somehow missed doing this when we were working on Power9 exploitation.
This just adds the missing legalization and cost for producing the vector
intrinsics.

Differential revision: https://reviews.llvm.org/D70436
2019-12-17 19:07:34 -06:00
David Green d6642ed1c8 [ARM] Add missing REQUIRES: asserts to test. NFC 2019-12-09 11:43:43 +00:00
David Green b1aba0378e [ARM] Enable MVE masked loads and stores
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.

Differential Revision: https://reviews.llvm.org/D70968
2019-12-09 11:37:34 +00:00
David Green be7a107070 [ARM] Teach the Arm cost model that a Shift can be folded into other instructions
This attempts to teach the cost model in Arm that code such as:
  %s = shl i32 %a, 3
  %a = and i32 %s, %b
Can under Arm or Thumb2 become:
  and r0, r1, r2, lsl #3

So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.

We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.

Differential Revision: https://reviews.llvm.org/D70966
2019-12-09 10:24:33 +00:00
David Green f008b5b8ce [ARM] Additional tests and minor formatting. NFC
This adds some extra cost model tests for shifts, and does some minor
adjustments to some Neon code to make it clear as to what it applies to.
Both NFC.
2019-12-09 10:24:33 +00:00
David Green 3a6eb5f160 [ARM] Disable VLD4 under MVE
Alas, using half the available vector registers in a single instruction
is just too much for the register allocator to handle. The mve-vldst4.ll
test here fails when these instructions are enabled at present. This
patch disables the generation of VLD4 and VST4 by adding a
mve-max-interleave-factor option, which we currently default to 2.

Differential Revision: https://reviews.llvm.org/D71109
2019-12-08 10:37:29 +00:00
Florian Hahn c491949694 [LV] Pick correct BB as insert point when fixing PHI for FORs.
Currently we fail to pick the right insertion point when
PreviousLastPart of a first-order-recurrence is a PHI node not in the
LoopVectorBody. This can happen when PreviousLastPart is produce in a
predicated block. In that case, we should pick the insertion point in
the BB the PHI is in.

Fixes PR44020.

Reviewers: hsaito, fhahn, Ayal, dorit

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D71071
2019-12-07 19:32:00 +00:00
Ayal Zaks 6ed9cef25f [LV] Scalar with predication must not be uniform
Fix PR40816: avoid considering scalar-with-predication instructions as also
uniform-after-vectorization.

Instructions identified as "scalar with predication" will be "vectorized" using
a replicating region. If such instructions are also optimized as "uniform after
vectorization", namely when only the first of VF lanes is used, such a
replicating region becomes erroneous - only the first instance of the region can
and should be formed. Fix such cases by not considering such instructions as
"uniform after vectorization".

Differential Revision: https://reviews.llvm.org/D70298
2019-12-03 19:50:24 +02:00
Roman Lebedev 0f22e783a0
[InstCombine] Revert rL341831: relax one-use check in foldICmpAddConstant() (PR44100)
rL341831 moved one-use check higher up, restricting a few folds
that produced a single instruction from two instructions to the case
where the inner instruction would go away.

Original commit message:
> InstCombine: move hasOneUse check to the top of foldICmpAddConstant
>
> There were two combines not covered by the check before now,
> neither of which actually differed from normal in the benefit analysis.
>
> The most recent seems to be because it was just added at the top of the
> function (naturally). The older is from way back in 2008 (r46687)
> when we just didn't put those checks in so routinely, and has been
> diligently maintained since.

From the commit message alone, there doesn't seem to be a
deeper motivation, deeper problem that was trying to solve,
other than 'fixing the wrong one-use check'.

As i have briefly discusses in IRC with Tim, the original motivation
can no longer be recovered, too much time has passed.

However i believe that the original fold was doing the right thing,
we should be performing such a transformation even if the inner `add`
will not go away - that will still unchain the comparison from `add`,
it will no longer need to wait for `add` to compute.

Doing so doesn't seem to break any particular idioms,
as least as far as i can see.

References https://bugs.llvm.org/show_bug.cgi?id=44100
2019-12-02 18:06:15 +03:00
Florian Hahn ec3efcf11f [IVDescriptors] Skip FOR where we have multiple sink points for now.
This fixes a crash with instructions where multiple operands are
first-order-recurrences.
2019-11-28 22:18:47 +01:00
Sanjay Patel 5c166f1d19 [x86] make SLM extract vector element more expensive than default
I'm not sure what the effect of this change will be on all of the affected
tests or a larger benchmark, but it fixes the horizontal add/sub problems
noted here:
https://reviews.llvm.org/D59710?vs=227972&id=228095&whitespace=ignore-most#toc

The costs are based on reciprocal throughput numbers in Agner's tables for
PEXTR*; these appear to be very slow ops on Silvermont.

This is a small step towards the larger motivation discussed in PR43605:
https://bugs.llvm.org/show_bug.cgi?id=43605

Also, it seems likely that insert/extract is the source of perf regressions on
other CPUs (up to 30%) that were cited as part of the reason to revert D59710,
so maybe we'll extend the table-based approach to other subtargets.

Differential Revision: https://reviews.llvm.org/D70607
2019-11-27 14:08:56 -05:00
Florian Hahn 9d24933f79 Recommit f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
This version contains 2 fixes for reported issues:
1. Make sure we do not try to sink terminator instructions.
2. Make sure we bail out, if we try to sink an instruction that needs to
   stay in place for another recurrence.

Original message:
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-24 21:21:55 +00:00
Sjoerd Meijer 901cd3b3f6 [LV] PreferPredicateOverEpilog respecting option
Follow-up of cb47b8783: don't query TTI->preferPredicateOverEpilogue when
option -prefer-predicate-over-epilog is set to false, i.e. when we prefer not
to predicate the loop.

Differential Revision: https://reviews.llvm.org/D70382
2019-11-21 14:06:10 +00:00
David Green 882f23caea [ARM] MVE interleaving load and stores.
Now that we have the intrinsics, we can add VLD2/4 and VST2/4 lowering
for MVE. This works the same way as Neon, recognising the load/shuffles
combination and converting them into intrinsics in a pre-isel pass,
which just calls getMaxSupportedInterleaveFactor, lowerInterleavedLoad
and lowerInterleavedStore.

The main difference to Neon is that we do not have a VLD3 instruction.
Otherwise most of the code works very similarly, with just some minor
differences in the form of the intrinsics to work around. VLD3 is
disabled by making isLegalInterleavedAccessType return false for those
cases.

We may need some other future adjustments, such as VLD4 take up half the
available registers so should maybe cost more. This patch should get the
basics in though.

Differential Revision: https://reviews.llvm.org/D69392
2019-11-19 18:37:30 +00:00
David Green 411bfe476b [ARM] Add and update a lot of VLDn tests. NFC 2019-11-19 18:37:30 +00:00
Sjoerd Meijer 71327707b0 [ARM][MVE] tail-predication
This is a follow up of d90804d, to also flag fmcp instructions as instructions
that we do not support in tail-predicated vector loops.

Differential Revision: https://reviews.llvm.org/D70295
2019-11-15 11:01:13 +00:00
Sjoerd Meijer cb47b87830 [LV] PreferPredicateOverEpilog respecting predicate loop hint
The vectoriser queries TTI->preferPredicateOverEpilogue to determine if
tail-folding is preferred for a loop, but it was not respecting loop hint
'predicate' that can disable this, which has now been added. This showed that
we were incorrectly initialising loop hint 'vectorize.predicate.enable' with 0
(i.e. FK_Disabled) but this should have been FK_Undefined, which has been
fixed.

Differential Revision: https://reviews.llvm.org/D70125
2019-11-14 13:10:44 +00:00
Sjoerd Meijer d90804d26b [ARM][MVE] canTailPredicateLoop
This implements TTI hook 'preferPredicateOverEpilogue' for MVE.  This is a
first version and it operates on single block loops only. With this change, the
vectoriser will now determine if tail-folding scalar remainder loops is
possible/desired, which is the first step to generate MVE tail-predicated
vector loops.

This is disabled by default for now. I.e,, this is depends on option
-disable-mve-tail-predication, which is off by default.

I will follow up on this soon with a patch for the vectoriser to respect loop
hint 'vectorize.predicate.enable'. I.e., with this loop hint set to Disabled,
we don't want to tail-fold and we shouldn't query this TTI hook, which is
done in D70125.

Differential Revision: https://reviews.llvm.org/D69845
2019-11-13 13:24:33 +00:00
Gil Rapaport 7f152543e4 [LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)
This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.
2019-11-09 20:52:25 +02:00
Gil Rapaport 9f08ce0d21 Revert "[LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)"
This reverts commit 11ed1c0239 - causes an assert failure.
2019-11-08 22:17:11 +02:00
Gil Rapaport 11ed1c0239 [LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)
This recommits 100e797adb (reverted in
009e032634 for failing an assert). While the
root cause was independently reverted in eaff300401,
this commit includes a LIT to make sure IVDescriptor's SinkAfter logic does not
try to sink branch instructions.
2019-11-08 15:25:14 +02:00
Hans Wennborg eaff300401 Revert f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
It broke Chromium, causing "Instruction does not dominate all uses!" errors.
See https://bugs.chromium.org/p/chromium/issues/detail?id=1022297#c1 for a
reproducer.

> If the recurrence PHI node has a single user, we can sink any
> instruction without side effects, given that all users are dominated by
> the instruction computing the incoming value of the next iteration
> ('Previous'). We can sink instructions that may cause traps, because
> that only causes the trap to occur later, but not on any new paths.
>
> With the relaxed check, we also have to make sure that we do not have a
> direct cycle (meaning PHI user == 'Previous), which indicates a
> reduction relation, which potentially gets missed by
> ReductionDescriptor.
>
> As follow-ups, we can also sink stores, iff they do not alias with
> other instructions we move them across and we could also support sinking
> chains of instructions and multiple users of the PHI.
>
> Fixes PR43398.
>
> Reviewers: hsaito, dcaballe, Ayal, rengolin
>
> Reviewed By: Ayal
>
> Differential Revision: https://reviews.llvm.org/D69228
2019-11-07 11:00:02 +01:00
Sjoerd Meijer 6c2a4f5ff9 [TTI][LV] preferPredicateOverEpilogue
We have two ways to steer creating a predicated vector body over creating a
scalar epilogue. To force this, we have 1) a command line option and 2) a
pragma available. This adds a third: a target hook to TargetTransformInfo that
can be queried whether predication is preferred or not, which allows the
vectoriser to make the decision without forcing it.

While this change behaves as a non-functional change for now, it shows the
required TTI plumbing, usage of this new hook in the vectoriser, and the
beginning of an ARM MVE implementation. I will follow up on this with:
- a complete MVE implementation, see D69845.
- a patch to disable this, i.e. we should respect "vector_predicate(disable)"
  and its corresponding loophint.

Differential Revision: https://reviews.llvm.org/D69040
2019-11-06 10:14:20 +00:00
Florian Hahn f0c2a5af76 [LV] Generalize conditions for sinking instrs for first order recurrences.
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-02 22:08:27 +01:00
Craig Topper 4592f70758 [LV] Move interleave_short_tc.ll into the X86 directory to hopefully make fix non-X86 bots. 2019-11-01 10:41:18 -07:00
Craig Topper f8ba90d448 [LV] Add test case that was supposed to go with D67948
I forgot to git add it when I committed for Evgeniy.
2019-10-31 15:11:26 -07:00
Jay Foad 843c0adf0f [ConstantFold] Fold extractelement of getelementptr
Summary:
Getelementptr has vector type if any of its operands are vectors
(the scalar operands being implicitly broadcast to all vector elements).
Extractelement applied to a vector getelementptr can be folded by
applying the extractelement in turn to all of the vector operands.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69379
2019-10-28 18:32:39 +00:00
Craig Topper 18824d25d8 [LV] Interleaving should not exceed estimated loop trip count.
Currently we may do iterleaving by more than estimated trip count
coming from the profile or computed maximum trip count. The solution is to
use "best known" trip count instead of exact one in interleaving analysis.

Patch by Evgeniy Brevnov.

Differential Revision: https://reviews.llvm.org/D67948
2019-10-28 10:58:22 -07:00
Sam Parker 39af8a3a3b [DAGCombine][ARM] Enable extending masked loads
Add generic DAG combine for extending masked loads.

Allow us to generate sext/zext masked loads which can access v4i8,
v8i8 and v4i16 memory to produce v4i32, v8i16 and v4i32 respectively.

Differential Revision: https://reviews.llvm.org/D68337

llvm-svn: 375085
2019-10-17 07:55:55 +00:00
Zi Xuan Wu 9802268ad3 recommit: [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374634
2019-10-12 02:53:04 +00:00
Sjoerd Meijer d1170dbe58 [LV] Emitting SCEV checks with OptForSize
When optimising for size and SCEV runtime checks need to be emitted to check
overflow behaviour, the loop vectorizer can run in this assert:

  LoopVectorize.cpp:2699: void llvm::InnerLoopVectorizer::emitSCEVChecks(
  llvm::Loop *, llvm::BasicBlock *): Assertion `!BB->getParent()->hasOptSize()
  && "Cannot SCEV check stride or overflow when opt

We should not generate predicates while optimising for size because
code will be generated for predicates such as these SCEV overflow runtime
checks.

This should fix PR43371.

Differential Revision: https://reviews.llvm.org/D68082

llvm-svn: 374166
2019-10-09 13:19:41 +00:00
Jinsong Ji 9912232b46 Revert "[LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize"
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"

This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.

The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.

llvm-svn: 374091
2019-10-08 17:32:56 +00:00
Zi Xuan Wu 2edc69c05d [NFC] Add REQUIRES for r374017 in testcase
llvm-svn: 374027
2019-10-08 08:49:15 +00:00