This patch takes the IO redirection logic from ScriptInterpreterPython
and moves it into the interpreter library so that it can be used by
other script interpreters. I've turned it into a RAII object so that we
don't have to worry about cleaning up in the calling code.
Differential revision: https://reviews.llvm.org/D82396
This function was modifying and returning pointers to static storage,
which meant that any two accesses to different Scalar objects could
potentially race (depending on which types the objects were storing and
the host endianness).
In the new version the user is responsible for providing a buffer into
which this method will store its binary representation. The main caller
(RegisterValue::GetBytes) already has one such buffer handy, so this did
not require any major rewrites.
To make that work, I've needed to mark the RegisterValue value buffer
mutable -- not an ideal solution, but definitely better than modifying
global storage. This could be further improved by changing
RegisterValue::GetBytes to take a buffer too.
The "type" argument to the function is mostly useless -- the only
interesting aspect of it is signedness. Pass signedness directly and
compute the value of bits and signedness fields -- that's exactly
what the single caller of this function does.
Summary:
LLVM is using its own isPrint/isSpace implementation that doesn't change depending on the current locale. LLDB should do the same
to prevent that internal logic changes depending on the set locale.
Reviewers: JDevlieghere, labath, mib, totally_not_teemperor
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D82175
Summary:
This patch aims to remove multiple copies of GetByteOrder() and ConvertRegisterKindToRegisterNumber used in various versions of RegisterContextPOSIX_*.
Both register implementations are move to RegisterContext class which is parent of RegisterContextPOSIX_* classes.
Built and tested on x86_64-linux-gnu, aarch64-linux-gnu and arm-linux-gnueabihf targets.
Reviewers: labath
Reviewed By: labath
Subscribers: wuzish, nemanjai, kristof.beyls, kbarton, atanasyan, lldb-commits
Differential Revision: https://reviews.llvm.org/D80104
The reproducer intentionally leak every object allocated during replay,
which means that modules never get orphaned. If this were to happen for
another reason, we might not be testing what we think we are. Assert
that there are no targets left at the end of a test and that the global
module cache is empty in the non-reproducer scenario.
Differential revision: https://reviews.llvm.org/D81612
Encountered the following situation: Let we started thread T1 and it hit
breakpoint on B1 location. We suspended T1 and continued the process.
Then we started thread T2 which hit for example the same location B1.
This time in a breakpoint callback we decided not to stop returning
false.
Expected result: process continues (as if T2 did not hit breakpoint) its
workflow with T1 still suspended. Actual result: process do stops (as if
T2 callback returned true).
Solution: We need invalidate StopInfo for threads that was previously
suspended just because something that is already inactive can not be the
reason of stop. Thread::GetPrivateStopInfo() may be appropriate place to
do it, because it gets called (through Thread::GetStopInfo()) every time
before process reports stop and user gets chance to change
m_resume_state again i.e if we see m_resume_state == eStateSuspended
it definitely means it was set during previous stop and it also means
this thread can not be stopped again (cos' it was frozen during
previous stop).
Differential revision: https://reviews.llvm.org/D80112
The are not needed as Scalar is implicitly constructible from all of
these types (so the compiler will use a combination of a constructor +
move assignment instead), and they make it very easy for implementations
of assignment and construction operations to diverge.
This field is unused (the only way to change its value is via a
constructor which is never called), and as far as I can tell it has been
unused since it was introduced in D12100. It also has some soundness
issues -- e.g. operator= does not reinitialize it, but uses the old
value from the overwritten object.
It sounds like this class should be able to support different floating
point semantics, but if that is needed, it would be better to start
afresh -- probably by passing in an APFloat::fltSemantics object instead
of a bool flag.
Color the error: and warning: part of the CommandReturnObject output,
similar to how an error is printed from the driver when colors are
enabled.
Differential revision: https://reviews.llvm.org/D81058
Summary:
The way that the support for the GNU dialect of tail call frames was
implemented in D80519 meant that the were reporting very bogus PC values
which pointed into the middle of an instruction: the -1 trick is
necessary for the address to resolve to the right function, but we
should still be reporting a more realistic PC value -- I say "realistic"
and not "real", because it's very debatable what should be the correct
PC value for frames like this.
This patch achieves that my moving the -1 from SymbolFileDWARF into the
stack frame computation code. The idea is that SymbolFileDWARF will
merely report whether it has provided an address of the instruction
after the tail call, or the address of the call instruction itself. The
StackFrameList machinery uses this information to set the "behaves like
frame zero" property of the artificial frames (the main thing this flag
does is it controls the -1 subtraction when looking up the function
address).
This required a moderate refactor of the CallEdge class, because it was
implicitly assuming that edges pointing after the call were real calls
and those pointing the the call insn were tail calls. The class now
carries this information explicitly -- it carries three mostly
independent pieces of information:
- an address of interest in the caller
- a bit saying whether this address points to the call insn or after it
- whether this is a tail call
Reviewers: vsk, dblaikie
Subscribers: aprantl, mgrang, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D81010
SBTarget::AddModule currently handles the UUID parameter in a very
weird way: UUIDs with more than 16 bytes are trimmed to 16 bytes. On
the other hand, shorter-than-16-bytes UUIDs are completely ignored. In
this patch, we change the parsing code to handle UUIDs of arbitrary
size.
To support arbitrary size UUIDs in SBTarget::AddModule, this patch
changes UUID::SetFromStringRef to parse UUIDs of arbitrary length. We
subtly change the semantics of SetFromStringRef - SetFromStringRef now
only succeeds if the entire input is consumed to prevent some
prefix-parsing confusion. This is up for discussion, but I believe
this is more consistent - we always return false for invalid UUIDs
rather than sometimes truncating to a valid prefix. Also, all the
call-sites except the API and interpreter seem to expect to consume
the entire input.
This also adds tests for adding existing modules 4-, 16-, and 20-byte
build-ids. Finally, we took the liberty of testing the minidump
scenario we care about - removing placeholder module from minidump and
replacing it with the real module.
Reviewed By: labath, friss
Differential Revision: https://reviews.llvm.org/D80755
The purpose of the LLDB_RECORD_DUMMY macro is twofold: it is used in
functions that take arguments that we don't know how to serialize (e.g.
void*) and it's used by function where we want to avoid doing excessive
work because they can be called from a signal handler (e.g.
setTerminalWidth).
To support the latter case, I've disabled API logging form the Recorder
ctor used by the DUMMY macro. This ensures we don't allocate memory when
called from a signal handler.
The llvm DWARFExpression dump is nearly identical, but better -- for
example it does print a spurious space after zero-argument expressions.
Some parts of our code (variable locations) have been already switched
to llvm-based expression dumping. This switches the remainder: unwind
plans and some unit tests.
This patchs adds an optional warning that is printed when stopped at a
frame that was compiled in a source language that LLDB has no plugin
for.
The motivational use-case is debugging Swift code on Linux. When the
user accidentally invokes the system LLDB that was built without the
Swift plugin, it is very much non-obvious why debugging doesnt
work. This warning makes it easy to figure out what went wrong.
<rdar://problem/56986569>
Summary: We are not doing this very often, but sometimes it's convenient when I can just << ConstStrings into llvm::errs() during testing.
Reviewers: labath, JDevlieghere
Reviewed By: labath, JDevlieghere
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D80310
This makes it possible to instrument the call for the reproducers. This
fixes TestStructuredDataAPI.py with reproducer replay.
Differential revision: https://reviews.llvm.org/D80312
This reverts commit b783f70a42. This
change had multiple issues which required post-commit fixups, and not
all issues are fixed yet. In particular, the LLDB build bot for ARM is
still broken. There is also an ongoing conversation in the original
phabricator review about whether there is undefined behavior in the
code.
This addresses some post-commit review feedback from
https://reviews.llvm.org/D80150 by renaming "Mock.h" to something less
misleading, and keeping logic related to the ObjC plugin separate from
the generic DataFormatters library.
Summary:
Fixes UBSan-reported issues where the date value inside of an
uninitialized NSDate overflows the 64-bit epoch.
rdar://61774575
Reviewers: JDevlieghere, mib, teemperor
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D80150
The reproducers' working directory is set to the current working
directory when they are initialized. While this is not optimal, as the
cwd can change during a debug session, it has been sufficient so far.
The current approach doesn't work for the API test suite however because
dotest temporarily changes the directory to where the test's Python file
lives.
This patch adds an API to tell the reproducers what to set the CWD to.
This is a NO-OP in every mode but capture.
Differential revision: https://reviews.llvm.org/D79825
The near-identical implementations of this function for posix-y
platforms were merged in r293910. PlatformWindows was left out of this
merge because at the time we did not have a suitable base class to sink
the code into. That is no longer true, so this commit finishes the job
by moving the code into RemoteAwarePlatform::ResolveExecutable.
Summary:
The comment in the Editine.h header made it sound like editline was
just unable to handle terminal resizing. We were not ever telling
editline that the terminal had changed size, which might explain why
it wasn't working.
This patch threads a `TerminalSizeChanged()` callback through the
IOHandler and invokes it from the SIGWINCH handler in the driver. Our
`Editline` class already had a `TerminalSizeChanged()` method which
was invoked only when editline was configured.
This patch also changes `Editline` to not apply the changes right away
in `TerminalSizeChanged()`, but instead defer that to the next
character read. During my testing, it happened once that the signal
was received while our `ConnectionFileDescriptor::Read` was allocating
memory. As `el_resize` seems to allocate memory too, this crashed.
Reviewers: labath, teemperor
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D79654
While debugging why TestProcessList.py failed during passive replay, I
remembered that we don't serialize the arguments for ProcessInfo. This
is necessary to make the test pass and to make platform process list -v
behave the same during capture and replay.
Differential revision: https://reviews.llvm.org/D79646
Summary:
1. A new common completion `CommandCompletions::Breakpoints` to provide a list of the breakpoints of the current context;
2. Apply the completion above to the commands breakpoint enable/disable/delete/modify;
3. Unit test.
Reviewers: teemperor, JDevlieghere
Reviewed By: teemperor
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D79666
Summary:
`CalculateSyntheticValue` and `GetSyntheticValue` have a `use_synthetic` parameter
that makes the function do nothing when it's false. We obviously always pass true
to the function (or check that the value we pass is true), because there really isn't
any point calling with function with a `false`. This just removes all of this.
Reviewers: labath, JDevlieghere, davide
Reviewed By: davide
Subscribers: davide
Differential Revision: https://reviews.llvm.org/D79568
Also, this moves numSDKs out of the actual enum, as to not mess with
the switch-cases-covered warning.
Differential Revision: https://reviews.llvm.org/D79603
Summary:
1. Created a new common completion for the registers of the current context;
2. Apply this new common completion to the commands register read/write;
3. Unit test.
Reviewers: teemperor, JDevlieghere
Reviewed By: teemperor
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D79490
When debugging a remote platform, the platform you get from
GetPlatformForArchitecture doesn't inherit from PlatformDarwin.
HostInfoMacOSX seems like the right place to have a global store of
local paths.
Differential Revision: https://reviews.llvm.org/D79364
When debugging from a SymbolMap the creation of CompileUnits for the
individual object files is so lazy that RegisterXcodeSDK() is not
invoked at all before the Swift TypeSystem wants to read it. This
patch fixes this by introducing an explicit
SymbolFile::ParseXcodeSDK() call that can be invoked deterministically
before the result is required.
<rdar://problem/62532151+62326862>
https://reviews.llvm.org/D79273
Summary:
Languages can have different ways of formatting special characters.
E.g. when debugging C++ code a string might look like "\b", but when
debugging Swift code the same string would look like "\u{8}".
To make this work, plugins override GetStringPrinterEscapingHelper.
However, because there's a large amount of subtly divergent work done in
each override, we end up with large amounts of duplicated code. And all
the memory smashers fixed in one copy of the logic (see D73860) don't
get fixed in the others.
IMO the GetStringPrinterEscapingHelper is overly general and hard to
use. I propose deleting it and replacing it with an EscapeStyle enum,
which can be set as needed by each plugin.
A fix for some swift-lldb memory smashers falls out fairly naturally
from this deletion (https://github.com/apple/llvm-project/pull/1046). As
the swift logic becomes really tiny, I propose moving it upstream as
part of this change. I've added unit tests to cover it.
rdar://61419673
Reviewers: JDevlieghere, davide
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77843
This adds an RunCommandInterpreter overload that returns an instance of
SBCommandInterpreterRunResults. The goal is to avoid having to add more
and more overloads when we need more output arguments.
Differential revision: https://reviews.llvm.org/D79120
This patch adds a new class CommandInterpreterRunResult which will be
backing the SBCommandInterpreterRunResult. It keeps track of the number
of errors as well as the result which is an enum, as proposed by Pavel
in D79120. The command interpreter now populates the results directly,
instead of its own member variables.
Differential revision: https://reviews.llvm.org/D79209
Currently, `SBCommandInterpreterRunOptions` is defined in
`SBCommandInterpreter.h`. Given that the options are always passed by
reference, a forward declaration is sufficient.
That's not the case for `SBCommandInterpreterRunResults`, which we need
for a new overload for `RunCommandInterpreter` and that returns this new
class by value. We can't include `SBCommandInterpreter.h` because
`SBCommandInterpreter::GetDebugger()` returns SBDebugger by value and
therefore needs a full definition.
This patch moves the definition of `SBCommandInterpreterRunOptions` into
a new header. In a later patch, `SBCommandInterpreterRunResults` will
be defined in there as well, solving the aforementioned problem.
Differential revision: https://reviews.llvm.org/D79115
This implements Greg's suggestion from D78825 to include "auto handle
events" and "spawn thread" in CommandInterpreterRunOptions. This change
is in preparation for adding a new overload for RunCommandInterpreter
that takes only SBCommandInterpreterRunOptions and returns
SBCommandInterpreterRunResults.
Differential revision: https://reviews.llvm.org/D79108
Summary: This patch increases maximum register size to 256 bytes to accommodate AArch64 SVE registers maximum possible size of 256 bytes.
Reviewers: labath, jankratochvil, rengolin
Reviewed By: labath
Subscribers: tschuett, kristof.beyls, danielkiss, lldb-commits
Differential Revision: https://reviews.llvm.org/D77044
Nothing guarantees that the objects in the StringMap remains at the same
address when the StringMap grows. Therefore we shouldn't return a
reference into the StringMap but return a copy of the string instead.
For developing the OS itself there exists an "internal" variant of
each SDK. This patch adds support for these SDK directories to the
XcodeSDK class.
Differential Revision: https://reviews.llvm.org/D78675
Several SB API functions return strings using (char*, size_t) output
arguments. During capture, we serialize an empty string for the char*
because the memory can be uninitialized.
During active replay, we have custom replay redirects that ensure that
we don't override the buffer from which we're reading, but rather write
to a buffer on the heap with the given length. This is sufficient for
the active reproducer use case, where we only care about the side
effects of the API calls, not the values actually returned.
This approach does not not work for passive replay because here we
ignore all the incoming arguments, and re-execute the current function
with the arguments deserialized from the reproducer. This means that
these function will update the deserialized copy of the arguments,
rather than whatever was passed in by the SWIG wrapper.
To solve this problem, this patch extends the reproducer instrumentation
to handle this special case for passive replay. We nog ignore the
replayer in the registry and the incoming char pointer, and instead
reinvoke the current method on the deserialized class, and populate the
output argument.
Differential revision: https://reviews.llvm.org/D77759
Support passive replay as proposed in the RFC [1] on lldb-dev and
described in more detail on the lldb website [2].
This patch extends the LLDB_RECORD macros to re-invoke the current
function with arguments deserialized from the reproducer. This relies on
the function being called in the exact same order as during replay. It
uses the same mechanism to toggle the API boundary as during recording,
which guarantees that only boundary crossing calls are replayed.
Another major change is that before this patch we could ignore the
result of an API call, because we only cared about the observable
behavior. Now we need to be able to return the replayed result to the
SWIG bindings.
We reuse a lot of the recording infrastructure, which can be a little
confusing. We kept the existing naming to limit the amount of churn, but
might revisit that in a future patch.
[1] http://lists.llvm.org/pipermail/lldb-dev/2020-April/016100.html
[2] https://lldb.llvm.org/resources/reproducers.html
Differential revision: https://reviews.llvm.org/D77602
Summary:
...and replace it with m_last_file_spec instead.
When Source Cache is enabled, the value stored in m_last_file_sp is
already in the Source Cache, and caching it again in SourceManager
brings no extra benefit. All we need is to "remember" the last used
file, and FileSpec can serve the same purpose.
When Source Cache is disabled, the user explicitly requested no caching
of source files, and therefore, m_last_file_sp should NOT be used.
Bug: llvm.org/PR45310
Depends on D76805.
Reviewers: labath, jingham
Reviewed By: jingham
Subscribers: labath, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76806
Summary:
LLDB memory-maps large source files, and at the same time, caches
all source files in the Source Cache.
On Windows, memory-mapped source files are not writeable, causing
bad user experience in IDEs (such as errors when saving edited files).
IDEs should have the ability to disable the Source Cache at LLDB
startup, so that users can edit source files while debugging.
Bug: llvm.org/PR45310
Reviewers: labath, JDevlieghere, jingham
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76804
This patch threads an lldb::DescriptionLevel through the typesystem to
allow dumping the full Clang AST (level=verbose) of any lldb::Type in
addition to the human-readable source description (default
level=full). This type dumping interface is currently not exposed
through the SBAPI.
The application is to let lldb-test dump the clang AST of search
results. I need this to test lazy type completion of clang types in
subsequent patches.
Differential Revision: https://reviews.llvm.org/D78329
Converting a function pointer to an object pointer is illegal as nothing
requires it to be in the same address space. Add an overload for
function pointers so we don't convert do this illegal conversion, and
simply print out "function pointer".
The recent change in the API macros revealed that we were not printing
the pointer address for a bunch of methods, but rather the address of
the pointer. It's something I had already noticed while looking at some
reproducer traces, but hadn't made it to the top of my list yet. This
fixes the issue by providing a more specific overload.
Redefine the LLDB_RECORD macros in terms of a common uber-macro to
reduce code duplication across them.
Differential revision: https://reviews.llvm.org/D78141
Summary:
The formatters code has a lot of 'reason' or 'why' values that we keep or-ing FormatterChoiceCriterion
enum values into. These values are only read by a single log statement and don't have any functional
purpose. It also seems the implementation is not finished (for example, display names and type
names don't have any dedicated enum values). Also everything is of course not tested or documented.
Let's just remove all of this.
Reviewers: labath, JDevlieghere, jingham, davide, vsk
Reviewed By: labath, vsk
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D77968
Make it possible to capture reproducers from the API test suite. Given
the symmetry between capture and replay, this patch also adds the
necessary code for replay. For now this is a NO-OP until the
corresponding reproducer instrumentation changes land.
For more info please refer to the RFC on lldb-dev:
http://lists.llvm.org/pipermail/lldb-dev/2020-April/016100.html
Differential revision: https://reviews.llvm.org/D77588
The instrumentation unit tests' current implementation uses global
variables to track constructor calls for the instrumented classes during
replay. This is suboptimal because it indirectly relies on how the
reproducer instrumentation is implemented. I found out when adding
support for passive replay and the test broke because we made an extra
(temporary) copy of the instrumented objects.
Additionally, the old approach wasn't very self-explanatory. It took me
a bit of time to understand why we were expecting the number of objects
in the test.
This patch rewrites the test and uses the index-to-object-mapping to
verify the objects created during replay. You can now specify the
expected objects, in order, and whether they should be valid or not. I
find that it makes the tests much easier to understand. More
importantly, this approach is resilient to implementation detail changes
in the instrumentation.
Types that came from a Clang module are nested in DW_TAG_module tags
in DWARF. This patch recreates the Clang module hierarchy in LLDB and
1;95;0csets the owning module information accordingly. My primary motivation
is to facilitate looking up per-module APINotes for individual
declarations, but this likely also has other applications.
This reapplies the previously reverted commit, but without support for
ClassTemplateSpecializations, which I'm going to look into separately.
rdar://problem/59634380
Differential Revision: https://reviews.llvm.org/D75488
Summary:
This adds support for commands created through the API to support autorepeat.
This covers the case of single word and multiword commands.
Comprehensive tests are included as well.
Reviewers: labath, clayborg
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77444
This is mostly useful for Swift support; it allows LLDB to substitute
a matching SDK it shipped with instead of the sysroot path that was
used at compile time.
The goal of this is to make the Xcode SDK something that behaves more
like the compiler's resource directory, as in that it ships with LLDB
rather than with the debugged program. This important primarily for
importing Swift and Clang modules in the expression evaluator, and
getting at the APINotes from the SDK in Swift.
For a cross-debugging scenario, this means you have to have an SDK for
your target installed alongside LLDB. In Xcode this will always be the
case.
rdar://problem/60640017
Differential Revision: https://reviews.llvm.org/D76471
Summary:
Usually when Clang emits an error Fix-It it does two things. It emits the diagnostic and then it fixes the
currently generated AST to reflect the applied Fix-It. While emitting the diagnostic is easy to implement,
fixing the currently generated AST is often tricky. That causes that some Fix-Its just keep the AST as-is or
abort the parsing process entirely. Once the parser stopped, any Fix-Its for the rest of the expression are
not detected and when the user manually applies the Fix-It, the next expression will just produce a new
Fix-It.
This is often occurring with quickly made Fix-Its that are just used to bridge temporary API changes
and that often are not worth implementing a proper API fixup in addition to the diagnostic. To still
give some kind of reasonable user-experience for users that have these Fix-Its and rely on them to
fix their expressions, this patch adds the ability to retry parsing with applied Fix-Its multiple time to
give the normal Fix-It experience where things Clang knows how to fix are not causing actual expression
error (at least when automatically applying Fix-Its is activated).
The way this is implemented is just by having another setting in the expression options that specify how
often we should try applying Fix-Its and then reparse the expression. The default setting is still 1 for everyone
so this should not affect the speed in which we fail to parse expressions.
Reviewers: jingham, JDevlieghere, friss, shafik
Reviewed By: shafik
Subscribers: shafik, abidh
Differential Revision: https://reviews.llvm.org/D77214
that were not reported by the OS plugin. To facilitate this, move
adding/updating the ThreadPlans for a Thread to the ThreadPlanStackMap.
Also move dumping thread plans there as well.
Added some tests for "thread plan list" and "thread plan discard" since
I didn't seem to have written any originally.
Differential Revision: https://reviews.llvm.org/D76814