Commit Graph

17 Commits

Author SHA1 Message Date
Sanjay Patel c03d93baa0 [X86] add an exedepfix entry for movq == movlps == movlpd
This is a 1-line patch (with a TODO for AVX because that will affect
even more regression tests) that lets us substitute the appropriate
64-bit store for the float/double/int domains.

It's not clear to me exactly what the difference is between the 0xD6 (MOVPQI2QImr) and 
0x7E (MOVSDto64mr) opcodes, but this is apparently the right choice.

Differential Revision: http://reviews.llvm.org/D8691

llvm-svn: 235014
2015-04-15 15:47:51 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Chandler Carruth 9f4530b95d [SDAG] Introduce a combined set to the DAG combiner which tracks nodes
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.

This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.

This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).

I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.

With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).

Differential Revision: http://reviews.llvm.org/D4638

llvm-svn: 213898
2014-07-24 22:15:28 +00:00
Andrew Trick e97d8d6dde Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

llvm-svn: 192750
2013-10-15 23:33:07 +00:00
Rafael Espindola 94a2c5642d Rename features to match what gcc and clang use.
There is no advantage in being different and using the same names simplifies
clang a bit.

llvm-svn: 189141
2013-08-23 20:21:34 +00:00
Andrew Trick 121124acf8 Revert "Temporarily enable MI-Sched on X86."
This reverts commit 98a9b72e8c56dc13a2617de84503a3d78352789c.

llvm-svn: 184823
2013-06-25 02:48:58 +00:00
Andrew Trick 5a1e0af838 Temporarily enable MI-Sched on X86.
Sorry for the unit test churn. I'll try to make the change permanently
next time.

llvm-svn: 184705
2013-06-24 09:13:20 +00:00
Michael Liao 8fe3a6bda4 Add test for ATOM ISA SSSE3
- Remove SSE4.1 feature in other ATOM-based test cases

llvm-svn: 166699
2012-10-25 17:50:05 +00:00
Preston Gurd f0a48ec8f1 This patch fixes 8 out of 20 unexpected failures in "make check"
when run on an Intel Atom processor. The failures have arisen due
to changes elsewhere in the trunk over the past 8 weeks or so.

These failures were not detected by the Atom buildbot because the
CPU on the Atom buildbot was not being detected as an Atom CPU.
The fix for this problem is in Host.cpp and X86Subtarget.cpp, but
shall remain commented out until the current set of Atom test failures
are fixed.

Patch by Andy Zhang and Tyler Nowicki!

llvm-svn: 160451
2012-07-18 20:49:17 +00:00
Nadav Rotem d2bdcebb14 When ext-loading and trunc-storing vectors to memory, on x86 32bit systems, allow loads/stores of 64bit values from xmm registers.
llvm-svn: 160044
2012-07-11 13:27:05 +00:00
Nadav Rotem 486ff59a9f Enable element promotion type legalization by deafault.
Changed tests which assumed that vectors are legalized by widening them.

llvm-svn: 142152
2011-10-16 20:31:33 +00:00
Chris Lattner ff392ab3ed now that generic vector types aren't selected onto MMX registers, these
tests don't need -disable-mmx.

llvm-svn: 122188
2010-12-19 20:12:58 +00:00
Mon P Wang 1a015acf69 Update tests to use FileCheck
llvm-svn: 84282
2009-10-16 22:09:05 +00:00
Dan Gohman 40503396da Eliminate more uses of llvm-as and llvm-dis.
llvm-svn: 81290
2009-09-08 23:54:48 +00:00
Dan Gohman 0d4bbf2c4a Remove obsolete -f flags.
llvm-svn: 79992
2009-08-25 15:38:29 +00:00
Mon P Wang 6e5f4bc1e7 Added some basic test cases for r61209
llvm-svn: 61210
2008-12-18 20:05:58 +00:00