This is a split patch of D96644.
Explicitly pass both `InnerLoop` and `OuterLoop` to function `processLoop` to remove the need to swap elements in loop list and allow making loop list an `ArrayRef`.
Also, fix inconsistent spellings of `OuterLoopId` and `Inner Loop Id` in debug log.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96650
When a literal that cannot fit in the immediate form of the fmov instruction
is used to initialise an SVE vector, an extra unnecessary fmov is currently
generated. This patch adds an extra codegen pattern preventing the extra
instruction from being generated.
Differential Revision: https://reviews.llvm.org/D96700
Co-Authored-By: Paul Walker <paul.walker@arm.com>
This patch adds a test that verifies all `CompilerInvocation` members are filled correctly during command line round-trip.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D96705
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:
```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
}
```
A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.
Reviewed By: david-arm, fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D95245
This patch generates the `-f[no-]finite-loops` arguments from `CompilerInvocation` (added in D96419), fixing test failures of Clang built with `-DCLANG_ROUND_TRIP_CC1_ARGS=ON`.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96761
Summary: Refactor SValBuilder::evalCast function. Make the function clear and get rid of redundant and repetitive code. Unite SValBuilder::evalCast, SimpleSValBuilder::dispatchCast, SimpleSValBuilder::evalCastFromNonLoc and SimpleSValBuilder::evalCastFromLoc functions into single SValBuilder::evalCast.
This patch shall not change any previous behavior.
Differential Revision: https://reviews.llvm.org/D90157
Add the following options:
* -fimplicit-none and -fno-implicit-none
* -fbackslash and -fno-backslash
* -flogical-abbreviations and -fno-logical-abbreviations
* -fxor-operator and -fno-xor-operator
* -falternative-parameter-statement
* -finput-charset=<value>
Summary of changes:
- Enable extensions in CompilerInvocation#ParseFrontendArgs
- Add encoding_ to Fortran::frontend::FrontendOptions
- Add encoding to Fortran::parser::Options
Differential Revision: https://reviews.llvm.org/D96407
Previously this might happen if there was no elseRegion and the method
was asked for all successor regions.
Differential Revision: https://reviews.llvm.org/D96764
These directives force the associated address to be interpreted as a
function or data respectively. CODE is the default when not specified.
Differential Revision: https://reviews.llvm.org/D96712
Reviewed by: MaskRay
Non-splatted non-integer build_vector nodes were mistakenly being
lowered as VID expressions, which should not happen. VID can only be
used to select integer build_vector nodes.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96718
The patterns mostly follow the scalar counterparts, save for some extra
optimizations to match the vector/scalar forms.
The patch adds a DAGCombine for ISD::FCOPYSIGN to try and reorder
ISD::FNEG around any ISD::FP_EXTEND or ISD::FP_TRUNC of the second
operand. This helps us achieve better codegen to match vfsgnjn.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96028
This revision adds support for hoisting "subtensor + vector.transfer_read" / "subtensor_insert + vector.transfer_write pairs" across scf.for.
The unit of hoisting becomes a HoistableRead / HoistableWrite struct which contains a pair of "vector.transfer_read + optional subtensor" / "vector.transfer_write + optional subtensor_insert".
scf::ForOp canonicalization patterns are applied greedily on the successful application of the transformation to cleanup the IR more eagerly and potentially expose more transformation opportunities.
Differential revision: https://reviews.llvm.org/D96731
This patch adds the following compiler frontend driver options:
* -fdebug-unparse (f18 spelling: -funparse)
* -fdebug-unparse-with-symbols (f18 spelling: -funparse-with-symbols)
The new driver will only accept the new spelling. `f18` will accept both
the original and the new spelling.
A new base class for frontend actions is added: `PrescanAndSemaAction`.
This is added to reduce code duplication that otherwise these new
options would lead to. Implementation from
* `ParseSyntaxOnlyAction::ExecutionAction`
is moved to:
* `PrescanAndSemaAction::BeginSourceFileAction`
This implementation is now shared between:
* PrescanAndSemaAction
* ParseSyntaxOnlyAction
* DebugUnparseAction
* DebugUnparseWithSymbolsAction
All tests that don't require other yet unimplemented options are
updated. This way `flang-new -fc1` is used instead of `f18` when
`FLANG_BUILD_NEW_DRIVER` is set to `On`. In order to facilitate this,
`%flang_fc1` is added in the LIT configuration (lit.cfg.py).
`asFortran` from f18.cpp is duplicated as `getBasicAsFortran` in
FrontendOptions.cpp. At this stage it's hard to find a good place to
share this method. I suggest that we revisit this once a switch from
`f18` to `flang-new` is complete.
Differential Revision: https://reviews.llvm.org/D96483
This patch changes costAndCollectOperands to use InstructionCost for
accumulated cost values.
isHighCostExpansion will return true if the cost has exceeded the budget.
Reviewed By: CarolineConcatto, ctetreau
Differential Revision: https://reviews.llvm.org/D92238
The following _action_ options are always used with `-fsyntax-only`
(also an _action_ option):
* -fdebug-dump-symbols
* -fdebug-dump-parse-tree
This patch makes the above options imply `-fsyntax-only`.
From the perspective of `f18` this change saves typing and is otherwise
a non-functional change. But it will simplify things in the new driver,
`flang-new`, in which only the last action option is taken into account
and executed. In other words, the following would only run
`-fsyntax-only`:
```
flang-new -fdebug-dump-symbols -fsyntax-only <input>
```
whereas this would only run `-fdebug-dump-symbols`:
```
flang-new -fsyntax-only -fdebug-dump-symbols <input>
```
Differential Revision: https://reviews.llvm.org/D96528
The patch also does some cleanup on the interface of the entry
points from TargetFinder into the heuristic resolution code.
Since the heuristic resolver is created in a place where the
ASTContext is available, it can store the ASTContext and the
NameFactory hack can be removed.
Differential revision: https://reviews.llvm.org/D92290
This patch updates codegen to use VPValues to manage the generated
scalarized instructions.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D92285
SliceAnalysis originally was developed in the context of affine.for within mlfunc.
It predates the notion of region.
This revision updates it to not hardcode specific ops like scf::ForOp.
When rooted at an op, the behavior of the slice computation changes as it recurses into the regions of the op. This does not support gathering all values transitively depending on a loop induction variable anymore.
Additional variants rooted at a Value are added to also support the existing behavior.
Differential revision: https://reviews.llvm.org/D96702
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
Delete unused `EnableTracer()` and `SetTracer()` functions on `Thread`. By deleting
these, their `ThreadPlan` counterparts also become unused.
Then, by deleting `ThreadPlanStack::EnableTracer`, `EnableSingleStep` becomes unused.
With no more callers to `EnableSingleStep`, the value `m_single_step` is always true and
can be removed as well.
Differential Revision: https://reviews.llvm.org/D96666
`GetRealStopInfo` has only one call site, and in that call site a reference to the
concrete thread plan is available (`ThreadPlanCallUserExpression`), from which
`GetRealStopInfo` can be called.
Differential Revision: https://reviews.llvm.org/D96687
Correct `RestoreThreadState` to a `void` return type. Also, update the signature of its
callee, `Thread::RestoreThreadStateFromCheckpoint`, by updating it to a `void` return
type, and making it non-`virtual`.
Differential Revision: https://reviews.llvm.org/D96688
This stops tablegen from generating patterns with the opposite type
in the opposite HwMode. This just adds wasted bytes to the isel table.
This reduces the isel table by about 1800 bytes.
The API is a bit awkward since you need to index into an array in the
passed struct. I guess an alternative would be to pass all of the
individual fields.
Return the best covering index, and additional needed to complete the
mask. This logically belongs in TargetRegisterInfo, although I ended
up not needing it for why I originally split this out.
The namespace is unnecessary, and libc++ style is not to include it on type names.
(As opposed to function names, where qualification affects ADL; and in certain
function signatures where `std::` and `_VSTD::` might be mangled differently.
This is none of those situations.)
This is annoying because the condition code legalization belongs
to LegalizeDAG, but our custom handler runs in Legalize vector ops
which occurs earlier.
This adds some of the mask binary operations so that we can combine
multiple compares that we need for expansion.
I've also fixed up RISCVISelDAGToDAG.cpp to handle copies of masks.
This patch contains a subset of the integer setcc patch as well.
That patch is dependent on the integer binary ops patch. I'll rebase
based on what order the patches go in.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96567
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
Simlilar was done for BSWAP previously.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96681
TestMultipleTargets.py fails randomly on Arm/AArch64 Linux buildbot with
no reasonable clues. I am marking it skipped for avoiding LLDB buildbot
failures due to this test.
In the motivating example from https://llvm.org/PR49171 and
reduced test here, we would unroll and clone assumes so much
that compile-time effectively became infinite while analyzing
all of those assumes.
Always turn on LIBCXX_ENABLE_NEW_DELETE_DEFINITIONS, if libcxxrt is used
as the C++ ABI library, since libcxxrt does not provide the full set
ofnew and delete operators. In particular, the aligned versions of these
operators are completely missing. This primarily addresses builds on
FreeBSD, as this platform uses libcxxrt by default.
Also, attempt to provide a FreeBSD.cmake cache file, with hopefully sane
settings, partially copied from the Apple.cmake cache file. This needs
more work, probably some additions to ci build scripts (although I am
not aware of any 'official' FreeBSD build bots).
Reviewed By: ldionne, #libc
Differential Revision: https://reviews.llvm.org/D96720