is not provided.
We should not emit any target-dependent code if only -fopenmp flag is
used and device targets are not provided to prevent compiler crash.
llvm-svn: 372623
Runtime function __kmpc_push_tripcount better to call inside of the task
context for target regions. Otherwise, the libomptarget is unable to
link the provided tripcount value for nowait target regions and
completely looses this information.
llvm-svn: 372609
If the variable, used in the loop boundaries, is not captured in the
construct, this variable must be considered as undefined if it was
privatized.
llvm-svn: 372252
This broke the Chromium build. Consider the following code:
float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) {
float fsum = 0.f;
int i;
#if defined(__clang__)
#pragma clang loop vectorize_width(4)
#endif
for (i = 0; i < width; ++i) {
float v = *src++;
fsum += v * v;
*dst++ = v * scale;
}
return fsum;
}
Compiling at -Oz, Clang now warns:
$ clang++ -target x86_64 -Oz -c /tmp/a.cc
/tmp/a.cc:1:7: warning: loop not vectorized: the optimizer was unable to
perform the requested transformation; the transformation might be disabled or
specified as part of an unsupported transformation ordering
[-Wpass-failed=transform-warning]
this suggests it's not actually enabling vectorization hard enough.
At -Os it asserts instead:
$ build.release/bin/clang++ -target x86_64 -Os -c /tmp/a.cc
clang-10: /work/llvm.monorepo/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp:2734: void
llvm::InnerLoopVectorizer::emitMemRuntimeChecks(llvm::Loop*, llvm::BasicBlock*): Assertion `
!BB->getParent()->hasOptSize() && "Cannot emit memory checks when optimizing for size"' failed.
Of course neither of these are what the developer expected from the pragma.
> Specifying the vectorization width was supposed to implicitly enable
> vectorization, except that it wasn't really doing this. It was only
> setting the vectorize.width metadata, but not vectorize.enable.
>
> This should fix PR27643.
>
> Differential Revision: https://reviews.llvm.org/D66290
llvm-svn: 372225
Specifying the vectorization width was supposed to implicitly enable
vectorization, except that it wasn't really doing this. It was only
setting the vectorize.width metadata, but not vectorize.enable.
This should fix PR27643.
Differential Revision: https://reviews.llvm.org/D66290
llvm-svn: 372082
In order to enable future improvements to our attribute diagnostics,
this moves info from ParsedAttr into CommonAttributeInfo, then makes
this type the base of the *Attr and ParsedAttr types. Quite a bit of
refactoring took place, including removing a bunch of redundant Spelling
Index propogation.
Differential Revision: https://reviews.llvm.org/D67368
llvm-svn: 371875
Summary:
* Don't bother using a thread wrapper when the variable is known to
have constant initialization.
* Emit the thread wrapper as discardable-if-unused in TUs that don't
contain a definition of the thread_local variable.
* Don't emit the thread wrapper at all if the thread_local variable
is unused and discardable; it will be emitted by all TUs that need
it.
Reviewers: rjmccall, jdoerfert
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67429
llvm-svn: 371767
Summary:
This adds `-fwasm-exceptions` (in similar fashion with
`-fdwarf-exceptions` or `-fsjlj-exceptions`) that turns on everything
with wasm exception handling from the frontend to the backend.
We currently have `-mexception-handling` in clang frontend, but this is
only about the architecture capability and does not turn on other
necessary options such as the exception model in the backend. (This can
be turned on with `llc -exception-model=wasm`, but llc is not invoked
separately as a command line tool, so this option has to be transferred
from clang.)
Turning on `-fwasm-exceptions` in clang also turns on
`-mexception-handling` if not specified, and will error out if
`-mno-exception-handling` is specified.
Reviewers: dschuff, tlively, sbc100
Subscribers: aprantl, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67208
llvm-svn: 371708
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
Multi-versioned functions defined by cpu_dispatch and implemented with IFunc
can not be called outside the translation units where they are defined due to
lack of symbols. This patch add function aliases for these functions and thus
make them visible outside.
Differential Revision: https://reviews.llvm.org/D67058
Patch by Senran Zhang
llvm-svn: 371586
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
constant.
If the constexpr variable is partially initialized, the initializer can
be emitted as the structure, not as an array, because of some early
optimizations. The llvm variable gets the type from this constant and,
thus, gets the type which is pointer to struct rather than pointer to an
array. We need to convert this type to be truely array, otherwise it may
lead to the compiler crash when trying to emit array subscript
expression.
llvm-svn: 371548
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
We're running into linker errors from missing sancov sections:
```
ld.lld: error: relocation refers to a discarded section: __sancov_guards
>>> defined in user-arm64-ubsan-sancov-full.shlib/obj/third_party/ulib/scudo/scudo.wrappers_c.cc.o
>>> referenced by common.h:26 (../../zircon/third_party/ulib/scudo/common.h:26)
... many other references
```
I believe this is due to a pass in the default pipeline that somehow discards
these sections. The ModuleSanitizerCoveragePass was initially added at the
start of the pipeline. This now adds it to the end of the pipeline for
optimized and unoptimized builds.
Differential Revision: https://reviews.llvm.org/D67323
llvm-svn: 371326
Clang patch to adapt to LLVM changes in D66428 that make the TLI
require a Function. There is no longer a module-level
TargetLibraryAnalysis, so remove its registration
llvm-svn: 371285
This avoids cloning variadic virtual methods when the target supports
musttail and the return type is not covariant. I think we never
implemented this previously because it doesn't handle the covariant
case. But, in the MS ABI, there are some cases where vtable thunks must
be emitted even when the variadic method defintion is not available, so
it looks like we need to implement this. Do it for both ABIs, since it's
a nice size improvement and simplification for Itanium.
Emit an error when emitting thunks for variadic methods with a covariant
return type. This case is essentially not implementable unless the ABI
provides a way to perfectly forward variadic arguments without a tail
call.
Fixes PR43173.
Differential Revision: https://reviews.llvm.org/D67028
llvm-svn: 371269
It shouldn't really be inlined into the EmitCheckedInBoundsGEP().
Refactoring it beforehand will make follow-up changes more obvious.
This was originally part of https://reviews.llvm.org/D67122
llvm-svn: 371207
As far as I can tell, gcc passes 256/512 bit vectors __int128 in memory. And passes a vector of 1 _int128 in an xmm register. The backend considers <X x i128> as an illegal type and will scalarize any arguments with that type. So we need to coerce the argument types in the frontend to match to avoid the illegal type.
I'm restricting this to change to Linux and NetBSD based on the
how similar ABI changes have been handled in the past.
PS4, FreeBSD, and Darwin are unaffected. I've also added a
new -fclang-abi-compat version to restore the old behavior.
This issue was identified in PR42607. Though even with the types changed, we still seem to be doing some unnecessary stack realignment.
llvm-svn: 371169
Summary:
r337347 added support for the Signal Processing Engine (SPE) to LLVM.
This follows that up with the clang side.
This adds -mspe and -mno-spe, to match GCC.
Subscribers: nemanjai, kbarton, cfe-commits
Differential Revision: https://reviews.llvm.org/D49754
llvm-svn: 371066
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
Summary:
Adds clang builtins and LLVM intrinsics for these experimental
instructions. They are not implemented in engines yet, but that is ok
because the user must opt into using them by calling the builtins.
Reviewers: aheejin, dschuff
Reviewed By: aheejin
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67020
llvm-svn: 370556
Summary:
Nico Weber reported that the following code:
char buf[9];
asm("" : "=r" (buf));
yields the "impossible constraint in asm: can't store struct into a register"
error message, although |buf| is not a struct (see
http://crbug.com/999160).
Make the error message more generic and add a test for it.
Also make sure other tests in x86_64-PR42672.c check for the full error
message.
Reviewers: eli.friedman, thakis
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66948
llvm-svn: 370444
Summary:
The "=r" output constraint for a structure variable passed to inline asm
shouldn't be converted to "=*r", as this changes the asm directive
semantics and prevents DSE optimizations.
Instead, preserve the constraints and return such structures as integers
of corresponding size, which are converted back to structures when
storing the result.
Fixes PR42672.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65234
llvm-svn: 370335
The previous version of this used CurFuncDecl in CodeGenFunction,
however this doesn't include lambdas. However, CurCodeDecl DOES. Switch
the check to use CurCodeDecl so that the actual function being emitted
gets checked, preventing an error in ISEL.
llvm-svn: 370261
This implements the DWARF 5 feature described in:
http://dwarfstd.org/ShowIssue.php?issue=141212.1
To support recognizing anonymous structs:
struct A {
struct { // Anonymous struct
int y;
};
} a;
This patch adds support in CGDebugInfo::CreateLimitedType(...) for this new flag and an accompanying test to verify this feature.
Differential Revision: https://reviews.llvm.org/D66667
llvm-svn: 370107
Currently, clang accepts a union with a reference member when given the -fms-extensions flag. This change fixes the codegen for this case.
Patch by Dominic Ferreira.
llvm-svn: 370052
Summary:
Previously critical regions were emitted with the barrier making it a
worksharing construct though it is not. Also, it leads to incorrect
behavior in Cuda9+. Patch fixes this problem.
Reviewers: ABataev, jdoerfert
Subscribers: jholewinski, guansong, cfe-commits, grokos
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66673
llvm-svn: 369946
non-ordered loops.
According to OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription, If the static schedule kind is specified or if the ordered clause is specified, and if the nonmonotonic modifier is not specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified.
The first part of this requirement is implemented in runtime. Patch adds
support for the second, nonmonotonic, part of this requirement.
llvm-svn: 369801
construct.
OpenMP 5.0 introduced new clause for declare target directive, device_type clause, which may accept values host, nohost, and any. Host means
that the function must be emitted only for the host, nohost - only for
the device, and any - for both, device and the host.
llvm-svn: 369775
Summary:
It seems that CodeGen was always using ExternalLinkage when emitting a
GlobalDecl with __attribute__((alias)). This leads to symbol
redefinitions (ODR) that cause failures at link time for static aliases.
This is readily attempting to link an ARM (32b) allyesconfig Linux
kernel built with Clang.
Reported-by: nathanchance
Suggested-by: ihalip
Link: https://bugs.llvm.org/show_bug.cgi?id=42377
Link: https://github.com/ClangBuiltLinux/linux/issues/631
Reviewers: rsmith, aaron.ballman, erichkeane
Reviewed By: aaron.ballman
Subscribers: javed.absar, kristof.beyls, cfe-commits, srhines, ihalip, nathanchance
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66492
llvm-svn: 369705
I noticed another instance of the issue where references to aliases were
being replaced with aliasees, this time in InstCombine. In the instance that
I saw it turned out to be only a QoI issue (a symbol ended up being missing
from the symbol table due to the last reference to the alias being removed,
preventing HWASAN from symbolizing a global reference), but it could easily
have manifested as incorrect behaviour.
Since this is the third such issue encountered (previously: D65118, D65314)
it seems to be time to address this common error/QoI issue once and for all
and make the strip* family of functions not look through aliases.
Includes a test for the specific issue that I saw, but no doubt there are
other similar bugs fixed here.
As with D65118 this has been tested to make sure that the optimization isn't
load bearing. I built Clang, Chromium for Linux, Android and Windows as well
as the test-suite and there were no size regressions.
Differential Revision: https://reviews.llvm.org/D66606
llvm-svn: 369697
It causes the build to fail with
"inlinable function call in a function with debug info must have a !dbg location"
in Chromium. See llvm-commits thread for more info.
(This also reverts the follow-up in r369474.)
> Fixes PR43012
>
> Differential Revision: https://reviews.llvm.org/D66328
llvm-svn: 369633
Match the behavior of D65009 under the new pass manager. This addresses
the test clang/test/CodeGen/split-lto-unit.c when running under the new
PM.
Differential Revision: https://reviews.llvm.org/D66488
llvm-svn: 369550
Summary:
Add `Frontend` time trace entry to `HandleTranslationUnit()` function.
Add test to check all codegen blocks are inside frontend blocks.
Also, change `--time-trace-granularity` option a bit to make sure very small
time blocks are outputed to json-file when using `--time-trace-granularity=0`.
This fixes http://llvm.org/pr41969
Reviewers: russell.gallop, lebedev.ri, thakis
Reviewed By: russell.gallop
Subscribers: vsapsai, aras-p, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63325
llvm-svn: 369308
CGLoopInfo was keeping pointers to parent loop LoopInfos, but when the loop info vector grew, it reallocated the storage and invalidated all of the parent pointers, causing use-after-free. Manage the lifetimes of the LoopInfos separately so that the pointers aren't stale.
Patch by Bevin Hansson.
llvm-svn: 369259
Summary:
D66168 passes size 0 structs indirectly, while the wasm backend expects it to
be passed directly. This causes subsequent variadic arguments to be read
incorrectly.
This diff changes it so that size 0 structs are passed directly.
Reviewers: dschuff, tlively, sbc100
Reviewed By: dschuff
Subscribers: jgravelle-google, aheejin, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66255
llvm-svn: 369042
New pragma "vectorize_predicate(enable)" now implies "vectorize(enable)",
and it is ignored when vectorization is disabled with e.g.
"vectorize(disable) vectorize_predicate(enable)".
Differential Revision: https://reviews.llvm.org/D65776
llvm-svn: 368970
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
Added basic support for non-rectangular loops. It requires an additional
analysis of min/max boundaries for non-rectangular loops. Since only
linear dependency is allowed, we can do this analysis.
llvm-svn: 368903
Summary: https://reviews.llvm.org/D50923 enabled the IR printing support for the new pass manager, but only for the case when `opt` tool is used as a driver. This patch is to enable the IR printing when `clang` is used as a driver.
Reviewers: fedor.sergeev, philip.pfaffe
Subscribers: cfe-commits, yamauchi, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65975
llvm-svn: 368804
Summary:
In the WebAssembly backend, when lowering variadic function calls, non-single
member aggregate type arguments are always passed by pointer.
However, when emitting va_arg code in clang, the arguments are instead read as
if they are passed directly. This results in the pointer being read as the
actual structure.
Fixes https://github.com/emscripten-core/emscripten/issues/9042.
Reviewers: tlively, sbc100, kripken, aheejin, dschuff
Reviewed By: dschuff
Subscribers: dschuff, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66168
llvm-svn: 368750
Summary:
As explained in http://lists.llvm.org/pipermail/llvm-dev/2018-March/121924.html,
the LLVM coroutines transforms are not yet able to move the
instructions for UBSan null checking past coroutine suspend boundaries.
For now, disable all UBSan checks when generating code for coroutines
functions.
I also considered an approach where only '-fsanitize=null' would be disabled,
However in practice this led to other LLVM errors when writing object files:
"Cannot represent a difference across sections". For now, disable all
UBSan checks until coroutine transforms are updated to handle them.
Test Plan:
1. check-clang
2. Compile the program in https://gist.github.com/modocache/54a036c3bf9c06882fe85122e105d153
using the '-fsanitize=null' option and confirm it does not crash
during LLVM IR generation.
Reviewers: GorNishanov, vsk, eric_niebler, lewissbaker
Reviewed By: vsk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D44672
llvm-svn: 368675
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Summary:
This patch adds support for the close map modifier in Clang.
This ensures that the new map type is marked and passed to the OpenMP runtime appropriately.
Additional regression tests have been merged from patch D55892 (author @saghir).
Reviewers: ABataev, caomhin, jdoerfert, kkwli0
Reviewed By: ABataev
Subscribers: kkwli0, Hahnfeld, saghir, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65341
llvm-svn: 368491
CFStrings should be 8-byte aligned when built for the Swift CF runtime
ABI as the atomic CF info field must be properly aligned. This is a
problem on 32-bit platforms which would give the structure 4-byte
alignment rather than 8-byte alignment.
llvm-svn: 368471
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
Summary:
An inline asm call may result in an immediate input value after inlining.
Therefore, don't emit a diagnostic here if the input isn't an immediate.
Reviewers: joerg, eli.friedman, rsmith
Subscribers: asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, s.egerton, krytarowski, mgorny, riccibruno, eraman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60943
llvm-svn: 368104
The implementation of the OpenCL builtin currently library uses 2
different hacks to get to the corresponding IR intrinsics from the
source. This will allow removal of those.
This is the set that is currently used (minus a few vector ones).
llvm-svn: 367973
This patch implements the code generation for OpenMP 5.0 declare mapper
(user-defined mapper) constructs. For each declare mapper, a mapper
function is generated. These mapper functions will be called by the
runtime and/or other mapper functions to achieve user defined mapping.
The design slides can be found at
https://github.com/lingda-li/public-sharing/blob/master/mapper_runtime_design.pptx
Re-commit after revert in r367773 because r367755 changed the LLVM-IR
output such that a CHECK line failed.
Patch by Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D59474
llvm-svn: 367905
This patch is a prerequisite for using LangStandard from Driver in
https://reviews.llvm.org/D64793.
It moves LangStandard* and InputKind::Language to Basic. It is mostly
mechanical, with only a few changes of note:
- enum Language has been changed into enum class Language : uint8_t to
avoid a clash between OpenCL in enum Language and OpenCL in enum
LangFeatures and not to increase the size of class InputKind.
- Now that getLangStandardForName, which is currently unused, also checks
both canonical and alias names, I've introduced a helper getLangKind
which factors out a code pattern already used 3 times.
The patch has been tested on x86_64-pc-solaris2.11, sparcv9-sun-solaris2.11,
and x86_64-pc-linux-gnu.
There's a companion patch for lldb which uses LangStandard.h
(https://reviews.llvm.org/D65717).
While polly includes isl which in turn uses InputKind::C, that part of the
code isn't even built inside the llvm tree. I've posted a patch to allow
for both InputKind::C and Language::C upstream
(https://groups.google.com/forum/#!topic/isl-development/6oEvNWOSQFE).
Differential Revision: https://reviews.llvm.org/D65562
llvm-svn: 367864
This patch implements the code generation for OpenMP 5.0 declare mapper
(user-defined mapper) constructs. For each declare mapper, a mapper
function is generated. These mapper functions will be called by the
runtime and/or other mapper functions to achieve user defined mapping.
The design slides can be found at
https://github.com/lingda-li/public-sharing/blob/master/mapper_runtime_design.pptx
Patch by Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D59474
llvm-svn: 367773
Previously, debuginfo types are annotated to
IR builtin preserve_struct_access_index() and
preserve_union_access_index(), but not
preserve_array_access_index(). The debug info
is useful to identify the root type name which
later will be used for type comparison.
For user access without explicit type conversions,
the previous scheme works as we can ignore intermediate
compiler generated type conversions (e.g., from union types to
union members) and still generate correct access index string.
The issue comes with user explicit type conversions, e.g.,
converting an array to a structure like below:
struct t { int a; char b[40]; };
struct p { int c; int d; };
struct t *var = ...;
... __builtin_preserve_access_index(&(((struct p *)&(var->b[0]))->d)) ...
Although BPF backend can derive the type of &(var->b[0]),
explicit type annotation make checking more consistent
and less error prone.
Another benefit is for multiple dimension array handling.
For example,
struct p { int c; int d; } g[8][9][10];
... __builtin_preserve_access_index(&g[2][3][4].d) ...
It would be possible to calculate the number of "struct p"'s
before accessing its member "d" if array debug info is
available as it contains each dimension range.
This patch enables to annotate IR builtin preserve_array_access_index()
with proper debuginfo type. The unit test case and language reference
is updated as well.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D65664
llvm-svn: 367724
Add PGO support at -O0 in the experimental new pass manager to sync the
behavior of the legacy pass manager.
Also change the test of gcc-flag-compatibility.c for more complete test:
(1) change the match string to "profc" and "profd" to ensure the
instrumentation is happening.
(2) add IR format proftext so that PGO use compilation is tested.
Differential Revision: https://reviews.llvm.org/D64029
llvm-svn: 367628
Update the callers of FileManager::getFile and FileManager::getDirectory to handle the new llvm::ErrorOr-returning methods.
Signed-off-by: Harlan Haskins <harlan@apple.com>
llvm-svn: 367616
Summary:
This patch fixes the case where variables in different compilation units or the same compilation unit are under the declare target link clause AND have the same name.
This also fixes the name clash error that occurs when unified memory is activated.
The changes in this patch include:
- Pointers to internal variables are given unique names.
- Externally visible variables are given the same name as before.
- All pointer variables (external or internal) are weakly linked.
Reviewers: ABataev, jdoerfert, caomhin
Reviewed By: ABataev
Subscribers: lebedev.ri, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64592
llvm-svn: 367613
In `CodeGenFunction::EmitAArch64BuiltinExpr()`, bulk move all of the aarch64 MSVC-builtin cases to an earlier point in the function (the `// Handle non-overloaded intrinsics first` switch block) in order to avoid an unreachable in `GetNeonType()`. The NEON type-overloading logic is not appropriate for the Windows builtins.
Fixes https://llvm.org/pr42775
Differential Revision: https://reviews.llvm.org/D65403
llvm-svn: 367323
As discussed in D65249, don't use AlignedCharArray or std::aligned_storage. Just use alignas(X) char Buf[Size];. This will allow me to remove AlignedCharArray entirely, and works on the current minimum version of Visual Studio.
llvm-svn: 367274
The `this` parameter of a thunk requires adjustment. Stop emitting an
incorrect dbg.declare pointing to the unadjusted pointer.
We could describe the adjusted value instead, but there may not be much
benefit in doing so as users tend not to debug thunks.
Robert O'Callahan reports that this matches gcc's behavior.
Fixes PR42627.
Differential Revision: https://reviews.llvm.org/D65035
llvm-svn: 367269
This reverts commit fd1274fa78cb0fd32cc1fa2e6f5bb8e62d29df19.
Add an explicit triple for the test which is pattern matching overly
aggressively.
llvm-svn: 367055
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
A placeholder instruction for use in generation of cleanup code for an
initializer list would not be emitted if the base class contained a
non-trivial destructor and the class contains no fields of its own. This
would be the case when using CTAD to deduce the template arguments for a
struct with an overloaded call operator, e.g.
```
template <class... Ts> struct ctad : Ts... {};
template <class... Ts> ctad(Ts...)->ctad<Ts...>;
```
and this class was initialized with a list of lambdas capturing by copy,
e.g.
```
ctad c {[s](short){}, [s](long){}};
```
In a release build the bug would manifest itself as a crash in the SROA
pass, however, in a debug build the following assert in CGCleanup.cpp
would fail:
```
assert(dominatingIP && "no existing variable and no dominating IP!");
```
By ensuring that a placeholder instruction is emitted even if there's no
fields in the class, neither the assert nor the crash is reproducible.
See https://bugs.llvm.org/show_bug.cgi?id=40771
Patch by Øystein Dale!
llvm-svn: 367042
This adds a new vectorize predication loop hint:
#pragma clang loop vectorize_predicate(enable)
that can be used to indicate to the vectoriser that all (load/store)
instructions should be predicated (masked). This allows, for example, folding
of the remainder loop into the main loop.
This patch will be followed up with D64916 and D65197. The former is a
refactoring in the loopvectorizer and the groundwork to make tail loop folding
a more general concept, and in the latter the actual tail loop folding
transformation will be implemented.
Differential Revision: https://reviews.llvm.org/D64744
llvm-svn: 366989
Modified the intrinsics
int_addressofreturnaddress,
int_frameaddress & int_sponentry.
This commit depends on the changes in rL366679
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D64563
llvm-svn: 366683
with '-mframe-pointer'
After D56351 and D64294, frame pointer handling is migrated to tri-state
(all, non-leaf, none) in clang driver and on the function attribute.
This patch makes the frame pointer handling cc1 option tri-state.
Reviewers: chandlerc, rnk, t.p.northover, MaskRay
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D56353
llvm-svn: 366645
Summary:
Add immutable WASM global `__tls_align` which stores the alignment
requirements of the TLS segment.
Add `__builtin_wasm_tls_align()` intrinsic to get this alignment in Clang.
The expected usage has now changed to:
__wasm_init_tls(memalign(__builtin_wasm_tls_align(),
__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, sbc100, sunfish, alexcrichton
Reviewed By: tlively
Subscribers: dschuff, jgravelle-google, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65028
llvm-svn: 366624
Summary:
Regular LTO modules do not need LTO Unit splitting, only ThinLTO does
(they must be consistently split into regular and Thin units for
optimizations such as whole program devirtualization and lower type
tests). In order to avoid spurious errors from LTO when combining with
split ThinLTO modules, always set this flag for regular LTO modules.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, steven_wu, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65009
llvm-svn: 366623
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
llvm-svn: 366544
Also, remove the final arg from ItaniumCXXABI in the PNaCl case since
its not needed.
Differential Revision: https://reviews.llvm.org/D64955
llvm-svn: 366518
The RISC-V hard float calling convention requires the frontend to:
* Detect cases where, once "flattened", a struct can be passed using
int+fp or fp+fp registers under the hard float ABI and coerce to the
appropriate type(s)
* Track usage of GPRs and FPRs in order to gate the above, and to
determine when signext/zeroext attributes must be added to integer
scalars
This patch attempts to do this in compliance with the documented ABI,
and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as
author of that code I've tagged you as reviewer for initial feedback on
my usage.
Note that a previous version of the ABI indicated that when passing an
int+fp struct using a GPR+FPR, the int would need to be sign or
zero-extended appropriately. GCC never did this and the ABI was changed,
which makes life easier as ABIArgInfo::CoerceAndExpand can't currently
handle sign/zero-extension attributes.
Re-landed after backing out 366450 due to missed hunks.
Differential Revision: https://reviews.llvm.org/D60456
llvm-svn: 366480
Summary:
Add `__builtin_wasm_tls_base` so that LeakSanitizer can find the thread-local
block and scan through it for memory leaks.
Reviewers: tlively, aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64900
llvm-svn: 366475
The RISC-V hard float calling convention requires the frontend to:
* Detect cases where, once "flattened", a struct can be passed using
int+fp or fp+fp registers under the hard float ABI and coerce to the
appropriate type(s) * Track usage of GPRs and FPRs in order to gate the
above, and to
determine when signext/zeroext attributes must be added to integer
scalars
This patch attempts to do this in compliance with the documented ABI,
and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as
author of that code I've tagged you as reviewer for initial feedback on
my usage.
Note that a previous version of the ABI indicated that when passing an
int+fp struct using a GPR+FPR, the int would need to be sign or
zero-extended appropriately. GCC never did this and the ABI was changed,
which makes life easier as ABIArgInfo::CoerceAndExpand can't currently
handle sign/zero-extension attributes.
Differential Revision: https://reviews.llvm.org/D60456
llvm-svn: 366450
Reason: this commit causes crashes in the clang compiler when building
LLVM Support with libc++, see https://bugs.llvm.org/show_bug.cgi?id=42665
for details.
llvm-svn: 366429
Summary:
This patch does mainly three things:
1. It fixes a false positive error detection in Sema that is similar to
D62156. The error happens when explicitly calling an overloaded
destructor for different address spaces.
2. It selects the correct destructor when multiple overloads for
address spaces are available.
3. It inserts the expected address space cast when invoking a
destructor, if needed, and therefore fixes a crash due to the unmet
assertion in llvm::CastInst::Create.
The following is a reproducer of the three issues:
struct MyType {
~MyType() {}
~MyType() __constant {}
};
__constant MyType myGlobal{};
kernel void foo() {
myGlobal.~MyType(); // 1 and 2.
// 1. error: cannot initialize object parameter of type
// '__generic MyType' with an expression of type '__constant MyType'
// 2. error: no matching member function for call to '~MyType'
}
kernel void bar() {
// 3. The implicit call to the destructor crashes due to:
// Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
// in llvm::CastInst::Create.
MyType myLocal;
}
The added test depends on D62413 and covers a few more things than the
above reproducer.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64569
llvm-svn: 366422
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
Summary:
Thread local variables are placed inside a `.tdata` segment. Their symbols are
offsets from the start of the segment. The address of a thread local variable
is computed as `__tls_base` + the offset from the start of the segment.
`.tdata` segment is a passive segment and `memory.init` is used once per thread
to initialize the thread local storage.
`__tls_base` is a wasm global. Since each thread has its own wasm instance,
it is effectively thread local. Currently, `__tls_base` must be initialized
at thread startup, and so cannot be used with dynamic libraries.
`__tls_base` is to be initialized with a new linker-synthesized function,
`__wasm_init_tls`, which takes as an argument a block of memory to use as the
storage for thread locals. It then initializes the block of memory and sets
`__tls_base`. As `__wasm_init_tls` will handle the memory initialization,
the memory does not have to be zeroed.
To help allocating memory for thread-local storage, a new compiler intrinsic
is introduced: `__builtin_wasm_tls_size()`. This instrinsic function returns
the size of the thread-local storage for the current function.
The expected usage is to run something like the following upon thread startup:
__wasm_init_tls(malloc(__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, kripken, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64537
llvm-svn: 366272
The original commit is r366076. It is temporarily reverted (r366155)
due to test failure. This resubmit makes test more robust by accepting
regex instead of hardcoded names/references in several places.
This is a followup patch for https://reviews.llvm.org/D61809.
Handle unnamed bitfield properly and add more test cases.
Fixed the unnamed bitfield issue. The unnamed bitfield is ignored
by debug info, so we need to ignore such a struct/union member
when we try to get the member index in the debug info.
D61809 contains two test cases but not enough as it does
not checking generated IRs in the fine grain level, and also
it does not have semantics checking tests.
This patch added unit tests for both code gen and semantics checking for
the new intrinsic.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 366231
The jcvt intrinsic defined in ACLE [1] is available when ARM_FEATURE_JCVT is defined.
This change introduces the AArch64 intrinsic, wires it up to the instruction and a new clang builtin function.
The __ARM_FEATURE_JCVT macro is now defined when an Armv8.3-A or higher target is used.
I've implemented the target detection logic in Clang so that this feature is enabled for architectures from armv8.3-a onwards (so -march=armv8.4-a also enables this, for example).
make check-all didn't show any new failures.
[1] https://developer.arm.com/docs/101028/latest/data-processing-intrinsics
Differential Revision: https://reviews.llvm.org/D64495
llvm-svn: 366197
i.e., recent 5745eccef54ddd3caca278d1d292a88b2281528b:
* Bump the function_type_mismatch handler version, as its signature has changed.
* The function_type_mismatch handler can return successfully now, so
SanitizerKind::Function must be AlwaysRecoverable (like for
SanitizerKind::Vptr).
* But the minimal runtime would still unconditionally treat a call to the
function_type_mismatch handler as failure, so disallow -fsanitize=function in
combination with -fsanitize-minimal-runtime (like it was already done for
-fsanitize=vptr).
* Add tests.
Differential Revision: https://reviews.llvm.org/D61479
llvm-svn: 366186
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
This is a followup patch for https://reviews.llvm.org/D61809.
Handle unnamed bitfield properly and add more test cases.
Fixed the unnamed bitfield issue. The unnamed bitfield is ignored
by debug info, so we need to ignore such a struct/union member
when we try to get the member index in the debug info.
D61809 contains two test cases but not enough as it does
not checking generated IRs in the fine grain level, and also
it does not have semantics checking tests.
This patch added unit tests for both code gen and semantics checking for
the new intrinsic.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 366076
Pass NULL to pointer arg of __cxa_atexit if addr space
is not matching with its param. This doesn't align yet
with how dtors are generated that should be changed too.
Differential Revision: https://reviews.llvm.org/D62413
llvm-svn: 366059
This patch series adds support for the next-generation arch13
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10303.
Note: No currently available Z system supports the arch13
architecture. Once new systems become available, the
official system name will be added as supported -march name.
llvm-svn: 365933
Summary:
Patch makes D63967 effective for 32bit platforms and improves pattern
initialization there. It cuts size of 32bit binary compiled with
-ftrivial-auto-var-init=pattern by 2% (3% with -Os).
Binary size change on CTMark, (with -fuse-ld=lld -Wl,--icf=all, similar results with default linker options)
```
master patch diff
Os pattern 7.915580e+05 7.698424e+05 -0.028387
O3 pattern 9.953688e+05 9.752952e+05 -0.019325
```
Zero vs Pattern on master
```
zero pattern diff
Os 7.689712e+05 7.915580e+05 0.031380
O3 9.744796e+05 9.953688e+05 0.021133
```
Zero vs Pattern with the patch
```
zero pattern diff
Os 7.689712e+05 7.698424e+05 0.000789
O3 9.744796e+05 9.752952e+05 0.000742
```
Reviewers: pcc, eugenis, glider, jfb
Reviewed By: jfb
Subscribers: hubert.reinterpretcast, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64597
llvm-svn: 365921
This reverts r365509 (git commit d088720eda)
This is a second revert[1] due to failures in internal test cases (shared offline) found during more thorough testing.
[1] Original patch commited as r364100, reverted as r364359, recommitted as r365509
llvm-svn: 365850
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
Replace a `llvm::Function *` parameter with a bool, which seems harder
to set to the wrong value by accident.
Differential Revision: https://reviews.llvm.org/D64540
llvm-svn: 365809
by David Truby.
Summary:
This adds a zero length array section mapping for each pointer captured by a lambda that is used in a target region, as per section 2.19.7.1 of the OpenMP 5 specification.
Reviewers: ABataev
Reviewed By: ABataev
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64558
llvm-svn: 365777
An os_log_helper FunctionDecl may not have a body. Ignore these for the
purposes of debug entry value emission.
Fixes an assertion failure seen in a stage2 build of clang:
Assertion failed: (FD->hasBody() && "Functions must have body here"),
function analyzeParametersModification
llvm-svn: 365716
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.
Reviewers: eugenis, pcc
Reviewed By: eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63940
llvm-svn: 365709
To enable a new implicit kernel argument,
increased the number of argument bytes from 48 to 56.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D63756
llvm-svn: 365643
Ignore trailing NullStmts in compound expressions when determining the result type and value. This is to match the GCC behavior which ignores semicolons at the end of compound expressions.
Patch by Dominic Ferreira.
llvm-svn: 365498
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61809
llvm-svn: 365438
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 365435
Summary:
Prior to r329065, we used [-max, max] as the range of representable
values because LLVM's `fptrunc` did not guarantee defined behavior when
truncating from a larger floating-point type to a smaller one. Now that
has been fixed, we can make clang follow normal IEEE 754 semantics in this
regard and take the larger range [-inf, +inf] as the range of representable
values.
In practice, this affects two parts of the frontend:
* the constant evaluator no longer treats floating-point evaluations
that result in +-inf as being undefined (because they no longer leave
the range of representable values of the type)
* UBSan no longer treats conversions to floating-point type that are
outside the [-max, +max] range as being undefined
In passing, also remove the float-divide-by-zero sanitizer from
-fsanitize=undefined, on the basis that while it's undefined per C++
rules (and we disallow it in constant expressions for that reason), it
is defined by Clang / LLVM / IEEE 754.
Reviewers: rnk, BillyONeal
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63793
llvm-svn: 365272
This case implicitly falls-through, which is fine now as it's at the end of the
function, but it seems like an accident waiting to happen.
llvm-svn: 365210
Without this fix gcc (7.4) complains with
/data/repo/master/clang/lib/CodeGen/CGObjCMac.cpp: In member function 'std::__cxx11::string {anonymous}::CGObjCCommonMac::GetSectionName(llvm::StringRef, llvm::StringRef)':
/data/repo/master/clang/lib/CodeGen/CGObjCMac.cpp:4944:1: error: control reaches end of non-void function [-Werror=return-type]
}
^
All values in the ObjectFormatType enum are currently handled in the switch
but gcc complains anyway.
llvm-svn: 365174
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
are then added.
For `UnknownObjectFormat`, the action (`llvm_unreachable`) for the
`default` case is kept.
For the other unhandled cases, `report_fatal_error` is used instead.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: wuzish, aheejin, jsji, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63767
llvm-svn: 365160
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
Attach a unique DISubprogram to a function declaration that will be
used for call site debug info.
([7/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60714
llvm-svn: 364502
Summary:
The changes in D59673 made the choice redundant, since we can achieve
single-file split DWARF just by not setting an output file name.
Like llc we can also derive whether to enable Split DWARF from whether
-split-dwarf-file is set, so we don't need the flag at all anymore.
The test CodeGen/split-debug-filename.c distinguished between having set
or not set -enable-split-dwarf with -split-dwarf-file, but we can
probably just always emit the metadata into the IR.
The flag -split-dwarf wasn't used at all anymore.
Reviewers: dblaikie, echristo
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D63167
llvm-svn: 364479
Emit the debug info flag that indicates that a parameter has unchanged
value throughout a function.
([5/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58035
llvm-svn: 364424
The option enables debug info about parameter's entry values.
The example of using the option:
clang -g -O2 -Xclang -femit-debug-entry-values test.c
In addition, when the option is set add the flag all_call_sites
in a subprogram in order to support GNU extension as well.
([3/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58033
llvm-svn: 364399
This patch introduces support of hip_pinned_shadow variable for HIP.
A hip_pinned_shadow variable is a global variable with attribute hip_pinned_shadow.
It has external linkage on device side and has no initializer. It has internal
linkage on host side and has initializer or static constructor. It can be accessed
in both device code and host code.
This allows HIP runtime to implement support of HIP texture reference.
Differential Revision: https://reviews.llvm.org/D62738
llvm-svn: 364381
Target-based runtime functions use int64_t type for sizes, while the
compiler uses size_t type. It leads to miscompilation in 32 bit mode.
llvm-svn: 364327
Unnamed bit-fields should not be represented in the TBAA metadata
because they do not represent storage fields (they only affect layout).
Zero-sized fields should not be represented in the TBAA metadata
because by definition they have no associated storage (so we will never
emit a load or store through them), and they might not appear in
declaration order within the struct layout.
Fixes a verifier failure when emitting a TBAA-enabled load through a
class type containing a zero-sized field.
llvm-svn: 364140
A handful of C++ cases as reported in PR42352 didn't actually give an
error when always_inlining with a different target feature list. This
resulted in broken IR.
llvm-svn: 364109
Summary:
Add support for the C++2a [[no_unique_address]] attribute for targets using the Itanium C++ ABI.
This depends on D63371.
Reviewers: rjmccall, aaron.ballman
Subscribers: dschuff, aheejin, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63451
llvm-svn: 363976
This fixes CodeGen/x86_64-instrument-functions.c when running under the new
pass manager. The pass should go before any other pass to prevent
`__cyg_profile_func_enter/exit()` from not being emitted by inlined functions.
Differential Revision: https://reviews.llvm.org/D63577
llvm-svn: 363969
Summary:
This patch adds support for the handling of the variables under the declare target to clause.
The variables in this case are handled like link variables are. A pointer is created on the host and then mapped to the device. The runtime will then copy the address of the host variable in the device pointer.
Reviewers: ABataev, AlexEichenberger, caomhin
Reviewed By: ABataev
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63108
llvm-svn: 363959
This introduced MMX instructions in code that wasn't previously using
them, breaking programs using 64-bit vectors and x87 floating-point in
the same application. See discussion on the code review for more
details.
> According to System V i386 ABI: the __m64 type paramater and return
> value are passed by MMX registers. But current implementation treats
> __m64 as i64 which results in parameter passing by stack and returning
> by EDX and EAX.
>
> This patch fixes the bug (https://bugs.llvm.org/show_bug.cgi?id=41029)
> for Linux and NetBSD.
>
> Patch by Wei Xiao (wxiao3)
>
> Differential Revision: https://reviews.llvm.org/D59744
llvm-svn: 363790
If the host uses 128 bit long doubles, the compiler should generate correct code for NVPTX devices. If the return type has 128 bit long doubles, in LLVM IR this type must be coerced to int array instead.
llvm-svn: 363720
Summary:
When a function argument or return type is a homogeneous aggregate
which contains an FP16 vector but the target does not support FP16
operations natively, the type must be converted into an array of
integer vectors by then front end (otherwise LLVM will handle FP16
vectors incorrectly by scalarizing them and promoting FP16 to float,
see https://reviews.llvm.org/D50507).
Currently the logic for checking whether or not a given homogeneous
aggregate contains FP16 vectors is incorrect: it only looks at the
type of the first vector.
This patch fixes the issue by adding a new method
ARMABIInfo::containsAnyFP16Vectors and using it. The traversal logic
of this method is largely the same as in
ABIInfo::isHomogeneousAggregate.
Reviewers: eli.friedman, olista01, ostannard
Reviewed By: ostannard
Subscribers: ostannard, john.brawn, javed.absar, kristof.beyls, pbarrio, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63437
llvm-svn: 363687
Summary:
This adds a ConstantBuilder class that deals with incrementally building
an aggregate constant, including support for overwriting
previously-emitted parts of the aggregate with new values.
This fixes a bunch of cases where we used to be unable to reduce a
DesignatedInitUpdateExpr down to an IR constant, and also lays some
groundwork for emission of class constants with [[no_unique_address]]
members.
Reviewers: rjmccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63371
llvm-svn: 363620
Would cause a crash in an attempt to create the type for the still
unresolved 'auto' in the partial specialization (& even without the use
of 'auto', the expression would be value dependent &
crash/assertion-fail there).
llvm-svn: 363606
Use -fsave-optimization-record=<format> to specify a different format
than the default, which is YAML.
For now, only YAML is supported.
llvm-svn: 363573
Summary:
- Revise the interface to derive the stub name and simplify the
assertion of it.
Reviewers: yaxunl, tra
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63335
llvm-svn: 363553
Summary:
With Split DWARF the resulting object file (then called skeleton CU)
contains the file name of another ("DWO") file with the debug info.
This can be a problem for remote compilation, as it will contain the
name of the file on the compilation server, not on the client.
To use Split DWARF with remote compilation, one needs to either
* make sure only relative paths are used, and mirror the build directory
structure of the client on the server,
* inject the desired file name on the client directly.
Since llc already supports the latter solution, we're just copying that
over. We allow setting the actual output filename separately from the
value of the DW_AT_[GNU_]dwo_name attribute in the skeleton CU.
Fixes PR40276.
Reviewers: dblaikie, echristo, tejohnson
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D59673
llvm-svn: 363496
Summary:
This is the first in a series of changes trying to align clang -cc1
flags for Split DWARF with those of llc. The unfortunate side effect of
having -split-dwarf-output for single file Split DWARF will disappear
again in a subsequent change.
The change is the result of a discussion in D59673.
Reviewers: dblaikie, echristo
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D63130
llvm-svn: 363494
'objc_arc_inert'
The attribute enables the ARC optimizer to delete ObjC ARC runtime calls
on the annotated globals (see https://reviews.llvm.org/D62433). We
currently only annotate global variables for string literals and global
blocks with the attribute.
rdar://problem/49839633
Differential Revision: https://reviews.llvm.org/D62831
llvm-svn: 363467
Summary: This patch avoids the emission of maps for target link variables when unified memory is present.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60883
llvm-svn: 363435
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
* Add a common function to setup opt-remarks
* Rename common options to the same names
* Add error types to distinguish between file errors and regex errors
llvm-svn: 363415
Enable 48-bytes of implicit arguments for HIP as well. Earlier it was enabled for OpenCL. This code is specific to AMDGPU target.
Differential Revision: https://reviews.llvm.org/D62244
llvm-svn: 363414
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
Summary:
Before it was using the fully qualified name only for static data members.
Now it does for all variable names to match MSVC.
Reviewers: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63012
llvm-svn: 363335
* Add a common function to setup opt-remarks
* Rename common options to the same names
* Add error types to distinguish between file errors and regex errors
llvm-svn: 363328
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363295
-fno-use-cxx-atexit is used
This matches the GCC behavior, __cxa_thread_atexit should be permissible
even though cxa_atexit is disabled.
Differential Revision: https://reviews.llvm.org/D63283/
llvm-svn: 363288
This contains the part of D62225 which fixes CodeGen/split-debug-single-file.c
by not placing .dwo sections when using -enable-split-dwarf=split.
Differential Revision: https://reviews.llvm.org/D63168
llvm-svn: 363281
This contains the part of D62225 which fixes Profile/gcc-flag-compatibility.c
by adding the pass that allows default profile generation to work under the new
PM. It seems that ./default.profraw was not being generated with new PM enabled.
Differential Revision: https://reviews.llvm.org/D63155
llvm-svn: 363278
According to System V i386 ABI: the __m64 type paramater and return
value are passed by MMX registers. But current implementation treats
__m64 as i64 which results in parameter passing by stack and returning
by EDX and EAX.
This patch fixes the bug (https://bugs.llvm.org/show_bug.cgi?id=41029)
for Linux and NetBSD.
Patch by Wei Xiao (wxiao3)
Differential Revision: https://reviews.llvm.org/D59744
llvm-svn: 363116
Seems like a logical extension to me - and of interest because it might
help reduce the debug info size of libc++ by applying this attribute to
type traits that have a disproportionate debug info cost compared to the
benefit (& possibly harm/confusion) they cause users.
llvm-svn: 362856
LLVM IR recently added a Type parameter to the byval Attribute, so that
when pointers become opaque and no longer have an element type the
information will still be present in IR.
For now the Type parameter is optional (which is why Clang didn't need
this change at the time), but it will become mandatory soon.
llvm-svn: 362652
Part 2 (the Clang portion) of D59881.
This patch (first of two patches) enables the vectorizer to recognize the
IBM MASS vector library routines. This patch specifically adds support for
recognizing the -vector-library=MASSV option, and defines mappings from IEEE
standard scalar math functions to generic PowerPC MASS vector counterparts.
For instance, the generic PowerPC MASS vector entry for double-precision
cbrt function is __cbrtd2_massv.
The second patch will further lower the generic PowerPC vector entries to
PowerPC subtarget-specific entries.
For instance, the PowerPC generic entry cbrtd2_massv is lowered to
cbrtd2_P9 for Power9 subtarget.
The overall support for MASS vector library is presented as such in two patches
for ease of review.
Patch by Jeeva Paudel.
Differential revision: https://reviews.llvm.org/D59881
llvm-svn: 362571
unordered initialization and internal linkage.
We'll run their initializers once on each reference, so we need a guard
variable even though they only have a single definition.
llvm-svn: 362562
'objc_alloc(self)'
Also convert '[[self alloc] init]' in a class method to a call to
'objc_alloc_init(self)'.
rdar://problem/50855121
Differential Revision: https://reviews.llvm.org/D62643
llvm-svn: 362521
Summary:
Keeps track of the enums that were used by saving them as DIGlobalVariables,
since CodeView emits debug info for global constants.
Reviewers: rnk
Subscribers: aprantl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62635
llvm-svn: 362166
Separate the remark serialization to YAML from the LLVM Diagnostics.
This adds a new serialization abstraction: remarks::Serializer. It's
completely independent from lib/IR and it provides an easy way to
replace YAML by providing a new remarks::Serializer.
Differential Revision: https://reviews.llvm.org/D62632
llvm-svn: 362160
Swift requires certain classes to be not just initialized lazily on first
use, but actually allocated lazily using information that is only available
at runtime. This is incompatible with ObjC class initialization, or at least
not efficiently compatible, because there is no meaningful class symbol
that can be put in a class-ref variable at load time. This leaves ObjC
code unable to access such classes, which is undesirable.
objc_class_stub says that class references should be resolved by calling
a new ObjC runtime function with a pointer to a new "class stub" structure.
Non-ObjC compilers (like Swift) can simply emit this structure when ObjC
interop is required for a class that cannot be statically allocated,
then apply this attribute to the `@interface` in the generated ObjC header
for the class.
This attribute can be thought of as a generalization of the existing
`objc_runtime_visible` attribute which permits more efficient class
resolution as well as supporting the additon of categories to the class.
Subclassing these classes from ObjC is currently not allowed.
Patch by Slava Pestov!
llvm-svn: 362054
Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
Summary:
Add static data members to IR debug info's list of global variables
so that they are emitted as S_CONSTANT records.
Related to https://bugs.llvm.org/show_bug.cgi?id=41615.
Reviewers: rnk
Subscribers: aprantl, cfe-commits, llvm-commits, thakis
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62167
llvm-svn: 362038
Summary:
- By declaring device variables as `static`, we assume they won't be
addressable from the host side. Thus, no `externally_initialized` is
required.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62603
llvm-svn: 361994
According to i386 System V ABI 2.1: Structures and unions assume the
alignment of their most strictly aligned component. But current
implementation always takes them as 4-byte aligned which will result
in incorrect code, e.g:
1 #include <immintrin.h>
2 typedef union {
3 int d[4];
4 __m128 m;
5 } M128;
6 extern void foo(int, ...);
7 void test(void)
8 {
9 M128 a;
10 foo(1, a);
11 foo(1, a.m);
12 }
The first call (line 10) takes the second arg as 4-byte aligned while
the second call (line 11) takes the second arg as 16-byte aligned.
There is oxymoron for the alignment of the 2 calls because they should
be the same.
This patch fixes the bug by following i386 System V ABI and apply it to
Linux only since other System V OS (e.g Darwin, PS4 and FreeBSD) don't
want to spend any effort dealing with the ramifications of ABI breaks
at present.
Patch by Wei Xiao (wxiao3)
Differential Revision: https://reviews.llvm.org/D60748
llvm-svn: 361934
Recently D60274 was introduced to allow lld to handle dependent libs. However current
usage of dependent libs (e.g. pragma comment(lib, *) in windows header files) are intended
for host only. Emitting the metadata in device IR causes link error in device path.
Until there is a way to different it dependent libs for device or host, metadata for dependent
libs should be emitted for host only. This patch enforces that.
Differential Revision: https://reviews.llvm.org/D62483
llvm-svn: 361880
As for other floating-point rounding builtins that can be optimized
when build with -fno-math-errno, this patch adds support for lrint
and llrint. It currently only optimize for AArch64 backend.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D62019
llvm-svn: 361878
If the variable is a firstprivate variable and it was not emitted beause
this a constant variable with the constant initializer, we can use the
initial value instead of the variable itself. It also fixes the problem
with the compiler crash in this case.
llvm-svn: 361564
Summary:
NewPassManager is not using CodeGenOpts values before this patch.
[to be coupled with D61616]
Reviewers: chandlerc
Subscribers: jlebar, cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61617
llvm-svn: 361534
Found in a bootstrap of LLVM with implicit modules, resulting in a
deadlock of some Orc unit tests with libstdc++ 8.1. An enum was used as
part of the implementation of std::recursive_mutex and this bug resulted
in the constant initialization of zero instead of the desired non-zero
value. => Badness.
Richard Smith tells me neither of these fields are necessarily canonical
& so using declaresSamEntity is the right solution here (rather than
changing both of these Fields to be canonical by construction/from their
source)
llvm-svn: 361428
Overaligned and underaligned types (i.e. types where the alignment has been
increased or decreased using the aligned and packed attributes) weren't being
correctly handled in all cases, as the unadjusted alignment should be used.
This patch also adjusts getTypeUnadjustedAlign to correctly handle typedefs of
non-aggregate types, which it appears it never had to handle before.
Differential Revision: https://reviews.llvm.org/D62152
llvm-svn: 361372
representing no such object, and an "Indeterminate" state representing
an uninitialized object. The latter is not yet used, but soon will be.
llvm-svn: 361328
Summary:
This patch adds support for the registration of the requires directives with the runtime.
Each requires directive clause will enable a particular flag to be set.
The set of flags is passed to the runtime to be checked for compatibility with other such flags coming from other object files.
The registration function is called whenever OpenMP is present even if a requires directive is not present. This helps detect cases in which requires directives are used inconsistently.
Reviewers: ABataev, AlexEichenberger, caomhin
Reviewed By: ABataev, AlexEichenberger
Subscribers: jholewinski, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60568
llvm-svn: 361298
Currently, we ignore all dso locality attributes/info when building for
the device and thus all symblos are externally visible and can be
preemted at the runtime. It may lead to incorrect results. We need to
follow the same logic, compiler uses for static/pie builds.
llvm-svn: 361283
performance.
Internally generated functions must be marked as always_inlines in most
cases. Patch marks some extra reduction function + outlined parallel
functions as always_inline for better performance, but only if the
optimization is requested.
llvm-svn: 361269
We shouldn't really make assumptions about possible sizes for long and long long. And longer term we should probably support vectorizing these intrinsics. By making the result types not fixed we can support vectors as well.
Differential Revision: https://reviews.llvm.org/D62026
llvm-svn: 361169
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
This reinstates r360974, reverted in r360988, with a fix for a
static_assert failure on 32-bit builds: force Type base class to have
8-byte alignment like the rest of Clang's AST nodes.
llvm-svn: 360995
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
llvm-svn: 360974
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
Previously we were doing this so that the 256 bit selectw builtin could be used in the implementation of the 512->256 bit conversion intrinsic.
After this commit we now use a masked convert builtin that will emit the intrinsic call and the 256-bit select from custom code in CGBuiltin. Then the header only needs to call that one intrinsic.
llvm-svn: 360924
As for other floating-point rounding builtins that can be optimized
when build with -fno-math-errno, this patch adds support for lround
and llround. It currently only optimize for AArch64 backend.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D61392
llvm-svn: 360896
r360876 didn't fix 2 call sites in clang.
Expected<ArrayRef<uint8_t>> may be better but use Expected<StringRef> for now.
Follow-up of D61781.
llvm-svn: 360892
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
Without this, I get e.g. 'PerformPendingInstantiations' -> 'std::fill',
now I get 'std::fill<unsigned long *, int>'.
Differential Revision: https://reviews.llvm.org/D61822
llvm-svn: 360539
necessary.
Prior to r349952, clang used to call objc_msgSend when sending a release
messages, emitting an invoke instruction instead of a call instruction
when it was necessary to catch an exception. That changed in r349952
because runtime function objc_release is called as a nounwind function,
which broke programs that were overriding the dealloc method and
throwing an exception from it. This patch restores the behavior prior to
r349952.
rdar://problem/50253394
Differential Revision: https://reviews.llvm.org/D61803
llvm-svn: 360474
Darwin if the version of libc++abi isn't new enough to include the fix
in r319123
This patch resurrects r264998, which was committed to work around a bug
in libc++abi that was causing _cxa_allocate_exception to return a memory
that wasn't double-word aligned.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20160328/154332.html
In addition, this patch makes clang issue a warning if the type of the
thrown object requires an alignment that is larger than the minimum
guaranteed by the target C++ runtime.
rdar://problem/49864414
Differential Revision: https://reviews.llvm.org/D61667
llvm-svn: 360404
private symbols in the __DATA segment internal.
This prevents the linker from removing the symbol names. Keeping the
symbols visible enables tools to collect various information about the
symbols, for example, tools that discover whether or not a symbol gets
dirtied.
rdar://problem/48887111
Differential Revision: https://reviews.llvm.org/D61454
llvm-svn: 360359
We need to be able to enqueue internal function that initializes
global constructors on the host side. Therefore it has to be
converted to a kernel.
This change factors out common logic for adding kernel metadata
and moves it from CodeGenFunction to CodeGenModule in order to
make it accessible for the extra use case.
Differential revision: https://reviews.llvm.org/D61488
llvm-svn: 360342
While ASan and MSan passes were already ported to new PM, the kernel
variants weren't setup in the pipeline which makes the KASan and KMSan
tests in Clang fail.
Differential Revision: https://reviews.llvm.org/D61664
llvm-svn: 360313
Summary:
A COFF stub indirects the reference to a symbol through memory. A
.refptr.$sym global variable pointer is created to refer to $sym.
Typically mingw uses these for external global variable declarations,
but we can use them for weak function declarations as well.
Updates the dso_local classification to add a special case for
extern_weak symbols on COFF in both clang and LLVM.
Fixes PR37598
Reviewers: smeenai, mstorsjo
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61615
llvm-svn: 360207
This matches the behavior of the old pass manager. There are some
targets that don't have target machine at all (e.g. le32, spir) which
whose tests would never run with new pass manager. Similarly, we would
need to disable tests for targets that are disabled.
Differential Revision: https://reviews.llvm.org/D58374
llvm-svn: 360100
In MinGW, setjmp isn't expanded as a builtin in the compiler (like it
is for MSVC), but manually hooked up as calls to the right underlying
functions in headers. Using the actual CRT's real setjmp/longjmp
functions requires this intrinsic. (Currently this is worked around by
using MinGW specific reimplementations of setjmp/longjmp on aarch64.)
Differential Revision: https://reviews.llvm.org/D61592
llvm-svn: 360082
Summary:
1. Enable infrastructure of AVX512_BF16, which is supported for BFLOAT16 in Cooper Lake;
2. Enable intrinsics for VCVTNE2PS2BF16, VCVTNEPS2BF16 and DPBF16PS instructions, which are Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
For more details about BF16 intrinsic, please refer to the latest ISE document: https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
Patch by LiuTianle
Reviewers: craig.topper, smaslov, LuoYuanke, wxiao3, annita.zhang, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60552
llvm-svn: 360018
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
Summary:
Fixes PR41677
Consider:
template <typename LHS, typename RHS> constexpr bool is_same_v = false;
template <typename T> constexpr bool is_same_v<T, T> = true;
template constexpr bool is_same_v<int, int>;
Before this change, when emitting debug info for the
`is_same_v<int, int>` global variable, clang would crash because it
would try to use the template parameter list from the partial
specialization to give parameter names to template arguments. This
doesn't work in general, since a partial specialization can have fewer
arguments than the primary template. Therefore, always use the primary
template. Hypothetically we could try to use the parameter names from
the partial specialization when possible, but it's not clear this really
helps debugging in practice.
Reviewers: JDevlieghere, aprantl, ormris, dblaikie
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61408
llvm-svn: 359809
This follows up after b7692bc3e9 "[UBSan] Fix
isDerivedFromAtOffset on iOS ARM64" fixed the RTTI comparison in
isDerivedFromAtOffset on just one platform and then
a25a2c7c9a "Always compare C++ typeinfo (based on
libstdc++ implementation)" extended that fix to more platforms.
But there is another RTTI comparison for -fsanitize=function generated in
clang's CodeGenFunction::EmitCall as just a pointer comparison. For
SANITIZER_NON_UNIQUE_TYPEINFO platforms this needs to be extended to also do
string comparison. For that, __ubsan_handle_function_type_mismatch[_abort]
takes the two std::type_info pointers as additional parameters now, checks them
internally for potential equivalence, and returns without reporting failure if
they turn out to be equivalent after all. (NORETURN needed to be dropped from
the _abort variant for that.) Also these functions depend on ABI-specific RTTI
now, so needed to be moved from plain UBSAN_SOURCES (ubsan_handlers.h/cc) to
UBSAN_CXXABI_SOURCES (ubsan_handlers_cxx.h/cc), but as -fsanitize=function is
only supported in C++ mode that's not a problem.
Differential Revision: https://reviews.llvm.org/D60760
llvm-svn: 359759
Summary:
C guarantees that brace-init with fewer initializers than members in the
aggregate will initialize the rest of the aggregate as-if it were static
initialization. In turn static initialization guarantees that padding is
initialized to zero bits.
Quoth the Standard:
C17 6.7.9 Initialization ❡21
If there are fewer initializers in a brace-enclosed list than there are elements
or members of an aggregate, or fewer characters in a string literal used to
initialize an array of known size than there are elements in the array, the
remainder of the aggregate shall be initialized implicitly the same as objects
that have static storage duration.
C17 6.7.9 Initialization ❡10
If an object that has automatic storage duration is not initialized explicitly,
its value is indeterminate. If an object that has static or thread storage
duration is not initialized explicitly, then:
* if it has pointer type, it is initialized to a null pointer;
* if it has arithmetic type, it is initialized to (positive or unsigned) zero;
* if it is an aggregate, every member is initialized (recursively) according to
these rules, and any padding is initialized to zero bits;
* if it is a union, the first named member is initialized (recursively)
according to these rules, and any padding is initialized to zero bits;
<rdar://problem/50188861>
Reviewers: glider, pcc, kcc, rjmccall, erik.pilkington
Subscribers: jkorous, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61280
llvm-svn: 359628
us emitting the operand of __builtin_constant_p if it has side-effects.
Original commit message:
Fix interactions between __builtin_constant_p and constexpr to match
current trunk GCC.
GCC permits information from outside the operand of
__builtin_constant_p (but in the same constant evaluation context) to be
used within that operand; clang now does so too. A few other minor
deviations from GCC's behavior showed up in my testing and are also
fixed (matching GCC):
* Clang now supports nullptr_t as the argument type for
__builtin_constant_p
* Clang now returns true from __builtin_constant_p if called with a
null pointer
* Clang now returns true from __builtin_constant_p if called with an
integer cast to pointer type
llvm-svn: 359367
This provides intrinsics support for Memory Tagging Extension (MTE),
which was introduced with the Armv8.5-a architecture.
These intrinsics are available when __ARM_FEATURE_MEMORY_TAGGING is defined.
Each intrinsic is described in detail in the ACLE Q1 2019 documentation:
https://developer.arm.com/docs/101028/latest
Reviewed By: Tim Nortover, David Spickett
Differential Revision: https://reviews.llvm.org/D60485
llvm-svn: 359348
This makes sure that code built with headers for a statically linked
libc++ also works when linking to the DLL version, when the DLL
hasn't been built with --export-all-symbols.
This matches what GCC for MinGW does for this test case.
Differential Revision: https://reviews.llvm.org/D61177
llvm-svn: 359345
Summary:
- `__constant__` variables should not be `hidden` as the linker may turn
them into `LOCAL` symbols.
Reviewers: yaxunl
Subscribers: jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61194
llvm-svn: 359344
This reverts r359250 (git commit 4730604bd3)
The newly added test should use -cc1 and -emit-llvm and there are other
test failures that need fixing.
llvm-svn: 359251
Statically link certain runtime library functions for MSVC/GNU Windows
environments. This is consistent with MSVC behavior.
Fixes LNK4286 and LNK4217 warnings from link.exe when linking the static
CRT:
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_noinst_test.cc.x86_64-calls.o'
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_test_main.cc.x86_64-calls.o'
LINK : warning LNK4217: symbol '_CxxThrowException' defined in 'libvcruntime.lib(throw.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.gtest-all.cc.x86_64-calls.o' in function '"int `public: static class UnitTest::GetInstance * __cdecl testing::UnitTest::GetInstance(void)'::`1'::dtor$5" (?dtor$5@?0??GetInstance@UnitTest@testing@@SAPEAV12@XZ@4HA)'
Reviewers: mstorsjo, efriedma, TomTan, compnerd, smeenai, mgrang
Subscribers: abdulras, theraven, smeenai, pcc, mehdi_amini, javed.absar, inglorion, kristof.beyls, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D55229
llvm-svn: 359250
These builtins provide access to the new integer and
sub-integer variants of MMA (matrix multiply-accumulate) instructions
provided by CUDA-10.x on sm_75 (AKA Turing) GPUs.
Also added a feature for PTX 6.4. While Clang/LLVM does not generate
any PTX instructions that need it, we still need to pass it through to
ptxas in order to be able to compile code that uses the new 'mma'
instruction as inline assembly (e.g used by NVIDIA's CUTLASS library
https://github.com/NVIDIA/cutlass/blob/master/cutlass/arch/mma.h#L101)
Differential Revision: https://reviews.llvm.org/D60279
llvm-svn: 359248
(this would regress size without a corresponding LLVM change that avoids
putting other user defined types inside type units when they aren't in
their own type units - instead emitting declarations inside the type
unit and a definition in the primary CU)
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D61079
llvm-svn: 359235
Currently InstrProf lowering is not enabled for Clang PGO instrumentation in
the new pass manager. The following command
"-fprofile-instr-generate -fexperimental-new-pass-manager ..." is broken.
This CL enables InstrProf lowering pass for Clang PGO instrumentation in the
new pass manager.
Differential Revision: https://reviews.llvm.org/D61138
llvm-svn: 359215
Summary:
Add a new variant to GlobalDecl for these so that we can detect them
more easily during debug info emission and handle them appropriately.
Reviewers: rsmith, rjmccall, jyu2
Subscribers: aprantl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60930
llvm-svn: 359148
Summary:
This patch implements `__builtin_is_constant_evaluated` as specifier by [P0595R2](https://wg21.link/p0595r2). It is built on the back of Bill Wendling's work for `__builtin_constant_p()`.
More tests to come, but early feedback is appreciated.
I plan to implement warnings for common mis-usages like those belowe in a following patch:
```
void foo(int x) {
if constexpr (std::is_constant_evaluated())) { // condition is always `true`. Should use plain `if` instead.
foo_constexpr(x);
} else {
foo_runtime(x);
}
}
```
Reviewers: rsmith, MaskRay, bruno, void
Reviewed By: rsmith
Subscribers: dexonsmith, zoecarver, fdeazeve, kristina, cfe-commits
Differential Revision: https://reviews.llvm.org/D55500
llvm-svn: 359067
AMDGPU currently relies on global properties being set before
setTargetProperties is called. Existing targets like MIPS which rely on
setTargetProperties do not rely on the current behavior, so this patch
moves the call later in SetFunctionAttributes.
Differential Revision: https://reviews.llvm.org/D60967
llvm-svn: 359039
Summary:
The opt level was not being passed down to the ThinLTO backend when
invoked via clang (for distributed ThinLTO).
This exposed an issue where the new PM was asserting if the Thin or
regular LTO backend pipelines were invoked with -O0 (not a new issue,
could be provoked by invoking in-process *LTO backends via linker using
new PM and -O0). Fix this similar to the old PM where -O0 only does the
necessary lowering of type metadata (WPD and LowerTypeTest passes) and
then quits, rather than asserting.
Reviewers: xur
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits, pcc
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61022
llvm-svn: 359025
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: hans, rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60800
llvm-svn: 358783
runtime.
target [teams distribute] simd costructs do not require full runtime for
the correct execution, we can run them without full runtime.
llvm-svn: 358766