The constant folding rules assumes value attributes of operands are already
verified to be in good standing.
For each op in the above, the constant folding rules support both integer and
floating point cases. Broadcast behavior is also supported as per the semantics
of TFLite ops.
This CL does not handle overflow/underflow cases yet.
PiperOrigin-RevId: 229441221
LLVM IR types are defined using MLIR's extendable type system. The dialect
provides the only type kind, LLVMType, that wraps an llvm::Type*. Since LLVM
IR types are pointer-unique, MLIR type systems relies on those pointers to
perform its own type unique'ing. Type parsing and printing is delegated to
LLVM libraries.
Define MLIR operations for the LLVM IR instructions currently used by the
translation to the LLVM IR Target to simplify eventual transition. Operations
classes are defined using TableGen. LLVM IR instruction operands that are only
allowed to take constant values are accepted as attributes instead. All
operations are using verbose form for printing and parsing.
PiperOrigin-RevId: 229400375
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types. For example, standard arithmetic operands
take scalars, vectors or tensors. In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type. The
existing TableGen definition of Type requires both. Extract out a
TypeConstraint TableGen class to define restrictions on types. Define the Type
TableGen class as a subclass of TypeConstraint for consistency. Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.
Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT). The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order. No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction. It is also unclear if it could lead to a
significantly simpler emitted C++ code. In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.
Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.
PiperOrigin-RevId: 229398247
This allows load, store and ForNest to be used with both Expr and Bindable.
This simplifies writing generic pieces of MLIR snippet.
For instance, a generic pointwise add can now be written:
```cpp
// Different Bindable ivs, one per loop in the loop nest.
auto ivs = makeBindables(shapeA.size());
Bindable zero, one;
// Same bindable, all equal to `zero`.
SmallVector<Bindable, 8> zeros(ivs.size(), zero);
// Same bindable, all equal to `one`.
SmallVector<Bindable, 8> ones(ivs.size(), one);
// clang-format off
Bindable A, B, C;
Stmt scalarA, scalarB, tmp;
Stmt block = edsc::Block({
ForNest(ivs, zeros, shapeA, ones, {
scalarA = load(A, ivs),
scalarB = load(B, ivs),
tmp = scalarA + scalarB,
store(tmp, C, ivs)
}),
});
// clang-format on
```
This CL also adds some extra support for pretty printing that will be used in
a future CL when we introduce standalone testing of EDSCs. At the momen twe
are lacking the basic infrastructure to write such tests.
PiperOrigin-RevId: 229375850
- this change is already consistent with the current code
- having no constraints made the integer set spec look odd - as nothing appears
between ':' and the closing parenthesis
- there is no loss in representational power - an unconstrained set can always
be represented by a trivially true constraint
PiperOrigin-RevId: 229307353
DenseElementAttr currently does not support value bitwidths of > 64. This can result in asan failures and crashes when trying to invoke DenseElementsAttr::writeBits/DenseElementsAttr::readBits.
PiperOrigin-RevId: 229241125
*) LoopFusion: Adds fusion cost function which compares the cost of the fused loop nest, with the cost of the two unfused loop nests to determine if it is profitable to fuse the candidate loop nests. The fusion cost function is run for various combinations for src/dst loop depths attempting find the minimum cost setting for src/dst loop depths which does not increase the computational cost when the loop nests are fused. Combinations of src/dst loop depth are evaluated attempting to maximize loop depth (i.e. take a bigger computation slice from the source loop nest, and insert it deeper in the destination loop nest for better locality).
*) LoopFusion: Adds utility to compute op instance count for loop nests, sliced loop nests, and to compute the cost of a loop nest fused with another sliced loop nest.
*) LoopFusion: canonicalizes slice bound AffineMaps (and updates related tests).
*) Analysis::Utils: Splits getBackwardComputationSlice into two functions: one which calculates and returns the slice loop bounds for analysis by LoopFusion, and the other for insertion of the computation slice (ones fusion has calculated the min-cost src/dst loop depths).
*) Test: Adds multiple unit tests to test the new functionality.
PiperOrigin-RevId: 229219757
This CL adds a short term remedy to an issue that was found during execution
tests.
Lowering of vector transfer ops uses the permutation map to determine which
ForInst have been super-vectorized. During materialization to HW vector sizes
however, some of those dimensions may be fully unrolled and do not appear in
the permutation map.
Such dimensions were then not clipped and may have accessed out of bounds.
This CL conservatively clips all dimensions to ensure no out of bounds access.
The longer term solution is still up for debate but will probably require
either passing more information between Materialization and lowering, or just
merging the 2 passes.
PiperOrigin-RevId: 228980787
Arguably the dependence of EDSCs on Analysis is not great but on the other
hand this is a strict improvement in the emitted IR and since EDSCs are an
alternative to builders it makes sense that they have as much access to
Analysis as Transforms.
PiperOrigin-RevId: 228967624
This CL is the 6th and last on the path to simplifying AffineMap composition.
This removes `AffineValueMap::forwardSubstitutions` and replaces it by simple
calls to `fullyComposeAffineMapAndOperands`.
PiperOrigin-RevId: 228962580
- should be testing on the output of -dma-generate and not '-dma-generate
-canonicalize'; save trouble for those updating -canonicalize in the future!
PiperOrigin-RevId: 228915192
The const folding logic is structurally similar, so use a template
to abstract the common part.
Moved mul(x, 0) to a legalization pattern to be consistent with
mul(x, 1).
Also promoted getZeroAttr() to be a method on Builder since it is
expected to be frequently used.
PiperOrigin-RevId: 228891989
Expand type matcher template generator to consider a set of predicates that are known to
hold. This avoids inserting redundant checking for trivially true predicates
(for example predicate that hold according to the op definition). This only targets predicates that trivially holds and does not attempt any logic equivalence proof.
PiperOrigin-RevId: 228880468
Multiple binaries have the needs to open input files. Use this function
to de-duplicate the code.
Also changed openOutputFile() to return errors using std::string since
it is a library call and accessing I/O in library call is not friendly.
PiperOrigin-RevId: 228878221
This CL is the 5th on the path to simplifying AffineMap composition.
This removes the distinction between normalized single-result AffineMap and
more general composed multi-result map.
One nice byproduct of making the implementation driven by single-result is
that the multi-result extension is a trivial change: the implementation is
still single-result and we just use:
```
unsigned idx = getIndexOf(...);
map.getResult(idx);
```
This CL also fixes an AffineNormalizer implementation issue related to symbols.
Namely it stops performing substitutions on symbols in AffineNormalizer and
instead concatenates them all to be consistent with the call to
`AffineMap::compose(AffineMap)`. This latter call to `compose` cannot perform
simplifications of symbols coming from different maps based on positions only:
i.e. dims are applied and renumbered but symbols must be concatenated.
The only way to determine whether symbols from different AffineApply are the
same is to look at the concrete values. The canonicalizeMapAndOperands is thus
extended with behavior to support replacing operands that appear multiple
times.
Lastly, this CL demonstrates that the implementation is correct by rewriting
ComposeAffineMaps using only `makeComposedAffineApply`. The implementation
uses a matcher because AffineApplyOp are introduced as composed operations on
the fly instead of iteratively forwardSubstituting. For this purpose, a walker
would revisit freshly introduced AffineApplyOp. Regardless, ComposeAffineMaps
is scheduled to disappear, this CL replaces the implementation based on
iterative `forwardSubstitute` by a composed-by-construction
`makeComposedAffineApply`.
Remaining calls to `forwardSubstitute` will be removed in the next CL.
PiperOrigin-RevId: 228830443
Previously these were all defined as operating on Tensors which is not true in general. These don't serve much now so just inline it and we can extract it out again.
PiperOrigin-RevId: 228827011
* Check was returning success instead of failure when reporting illegal type;
* TFL ops only support tensor types so update tests with corrected logic.
- Removed some checks in broadcasting that don't work with tensor input requirement;
PiperOrigin-RevId: 228770184
- FM has a worst case exponential complexity. For our purposes, this worst case
is rarely expected, but could still appear due to improperly constructed
constraints (a logical/memory error in other methods for eg.) or artificially
created arbitrarily complex integer sets (adversarial / fuzz tests).
Add a check to detect such an explosion in the number of constraints and
conservatively return false from isEmpty() (instead of running out of memory
or running for too long).
- Add an artifical virus test case.
PiperOrigin-RevId: 228753496
This implements the lowering of `floordiv`, `ceildiv` and `mod` operators from
affine expressions to the arithmetic primitive operations. Integer division
rules in affine expressions explicitly require rounding towards either negative
or positive infinity unlike machine implementations that round towards zero.
In the general case, implementing `floordiv` and `ceildiv` using machine signed
division requires computing both the quotient and the remainder. When the
divisor is positive, this can be simplified by adjusting the dividend and the
quotient by one and switching signs.
In the current use cases, we are unlikely to encounter affine expressions with
negative divisors (affine divisions appear in loop transformations such as
tiling that guarantee that divisors are positive by construction). Therefore,
it is reasonable to use branch-free single-division implementation. In case of
affine maps, divisors can only be literals so we can check the sign and
implement the case for negative divisors when the need arises.
The affine lowering pass can still fail when applied to semi-affine maps
(division or modulo by a symbol).
PiperOrigin-RevId: 228668181
* Get a specific successor operand.
* Iterator support for non successor operands.
* Fix bug when removing the last operand from the operand list of an Instruction.
* Get the argument number for a BlockArgument.
PiperOrigin-RevId: 228660898
- the double buffer should be indexed (iv floordiv step) % 2 and NOT (iv % 2);
step wasn't being accounted for.
- fix test cases, enable failing test cases
PiperOrigin-RevId: 228635726
This CL added a tblgen::Attribute class to wrap around raw TableGen
Record getValue*() calls on Attr defs, which will provide a nicer
API for handling TableGen Record.
PiperOrigin-RevId: 228581107
Originally, terminators were special kinds of operation and could not be
extended by dialects. Only builtin terminators were supported and they had
custom parsers and printers. Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list). Calling printDefaultOp on a terminator
drops all successor information. Dialects are thus required to provide custom
parsers and printers for their terminators.
Introduce the syntax for the list of successors in the verbose from of the
operation. Add support for printing and parsing verbose operations with
successors.
Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.
Add tests for verbose parsing. It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.
PiperOrigin-RevId: 228566453
- fix visitDivExpr: constraints constructed for localVarCst used the original
divisor instead of the simplified divisor; fix this. Add a simple test case
in memref-bound-check that reproduces this bug - although this was encountered in the
context of slicing for fusion.
- improve mod expr flattening: when flattening mod expressions,
cancel out the GCD of the numerator and denominator so that we can get a
simpler flattened form along with a simpler floordiv local var for it
PiperOrigin-RevId: 228539928
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL uses the simpler single-result unbounded AffineApplyOp in the
MaterializeVectors pass.
PiperOrigin-RevId: 228469085
This CL added a tblgen::Type class to wrap around raw TableGen
Record getValue*() calls on Type defs, which will provide a
nicer API for handling TableGen Record.
The PredCNF class is also updated to work together with
tblgen::Type.
PiperOrigin-RevId: 228429090
clients. Let's re-add it in the future if there is ever a reason to. NFC.
Unrelatedly, add a use of a variable to unbreak the non-assert build.
PiperOrigin-RevId: 228284026
This CL is the 4th on the path to simplifying AffineMap composition.
This CL extract canonicalizeMapAndOperands so it can be reused by other
functions; in particular, this will be used in
`makeNormalizedAffineApply`.
PiperOrigin-RevId: 228277890
This CL is the 3rd on the path to simplifying AffineMap composition.
This CL just moves `makeNormalizedAffineApply` from VectorAnalysis to
AffineAnalysis where it more naturally belongs.
PiperOrigin-RevId: 228277182
This CL is the 2nd on the path to simplifying AffineMap composition.
This CL uses the now accepted `AffineExpr::compose(AffineMap)` to
implement `AffineMap::compose(AffineMap)`.
Implications of keeping the simplification function in
Analysis are documented where relevant.
PiperOrigin-RevId: 228276646
Alias identifiers can be used in the place of the types that they alias, and are defined as:
type-alias-def ::= '!' alias-name '=' 'type' type
type-alias ::= '!' alias-name
Example:
!avx.m128 = type vector<4 x f32>
...
"foo"(%x) : vector<4 x f32> -> ()
// becomes:
"foo"(%x) : !avx.m128 -> ()
PiperOrigin-RevId: 228271372
This CL is the 1st on the path to simplifying AffineMap composition.
This CL uses the now accepted AffineExpr.replaceDimsAndSymbols to
implement `AffineExpr::compose(AffineMap)`.
Arguably, `simplifyAffineExpr` should be part of IR and not Analysis but
this CL does not yet pull the trigger on that.
PiperOrigin-RevId: 228265845
- refactor toAffineFromEq and the code surrounding it; refactor code into
FlatAffineConstraints::getSliceBounds
- add FlatAffineConstraints methods to detect identifiers as mod's and div's of other
identifiers
- add FlatAffineConstraints::getConstantLower/UpperBound
- Address b/122118218 (don't assert on invalid fusion depths cmdline flags -
instead, don't do anything; change cmdline flags
src-loop-depth -> fusion-src-loop-depth
- AffineExpr/Map print method update: don't fail on null instances (since we have
a wrapper around a pointer, it's avoidable); rationale: dump/print methods should
never fail if possible.
- Update memref-dataflow-opt to add an optimization to avoid a unnecessary call to
IsRangeOneToOne when it's trivially going to be true.
- Add additional test cases to exercise the new support
- update a few existing test cases since the maps are now generated uniformly with
all destination loop operands appearing for the backward slice
- Fix projectOut - fix wrong range for getBestElimCandidate.
- Fix for getConstantBoundOnDimSize() - didn't show up in any test cases since
we didn't have any non-hyperrectangular ones.
PiperOrigin-RevId: 228265152
- Detect 'mod' to replace the combination of floordiv, mul, and subtract when
possible at construction time; when 'c' is a power of two, this reduces the number of
operations; also more compact and readable. Update simplifyAdd for this.
On a side note:
- with the affine expr flattening we have, a mod expression like d0 mod c
would be flattened into d0 - c * q, c * q <= d0 <= c*q + c - 1, with 'q'
being added as the local variable (q = d0 floordiv c); as a result, a mod
was turned into a floordiv whenever the expression was reconstructed back,
i.e., as d0 - c * (d0 floordiv c); as a result of this change, we recover
the mod back.
- rename SimplifyAffineExpr -> SimplifyAffineStructures (pass had been renamed but
the file hadn't been).
PiperOrigin-RevId: 228258120
- when SSAValue/MLValue existed, code at several places was forced to create additional
aggregate temporaries of SmallVector<SSAValue/MLValue> to handle the conversion; get
rid of such redundant code
- use filling ctors instead of explicit loops
- for smallvectors, change insert(list.end(), ...) -> append(...
- improve comments at various places
- turn getMemRefAccess into MemRefAccess ctor and drop duplicated
getMemRefAccess. In the next CL, provide getAccess() accessors for load,
store, DMA op's to return a MemRefAccess.
PiperOrigin-RevId: 228243638
Use "native" vs "derived" to differentiate attributes on ops: native ones
are specified when creating the op as a part of defining the op, while
derived ones are computed from properties of the op.
PiperOrigin-RevId: 228186962
Bind attributes similar to operands. Use to rewrite leakyreulo and const rewrite pattern. The attribute type/attributes are not currently checked so should only be used where the attributes match due to the construction of the op.
To support current attribute namespacing, convert __ in attribute name to "$" for matching purposes ('$' is not valid character in variable in TableGen).
Some simplification to make it simpler to specify indented ostream and avoid so many spaces. The goal is not to have perfectly formatted code generated but good enough so that its still easy to read for a user.
PiperOrigin-RevId: 228183639
The `for` instruction defines the loop induction variable it uses. In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop. Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition. However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body. In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value. Explicitly drop all uses of the loop induction Value when
destroying a ForInst. It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.
PiperOrigin-RevId: 228168880
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references. This has been implemented as
iteration over the list of uses. However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list). Get a new iterator before calling drop to avoid
invalidation.
PiperOrigin-RevId: 228168849
getAffineBinaryOpExpr for consistency (NFC)
- this is consistent with the name of the class and getAffineDimExpr/ConstantExpr, etc.
PiperOrigin-RevId: 228164959
Integer comparisons can be constant folded if both of their arguments are known
constants, which we can compare in the compiler. This requires implementing
all comparison predicates, but thanks to consistency between LLVM and MLIR
comparison predicates, we have a one-to-one correspondence between predicates
and llvm::APInt comparison functions. Constant folding of comparsions with
maximum/minimum values of the integer type are left for future work.
This will be used to test the lowering of mod/floordiv/ceildiv in affine
expressions at compile time.
PiperOrigin-RevId: 228077580
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type. Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place. Add tests for scalar and vector cases. Also add a test for vector
`select` instruction for consistency with other tests.
PiperOrigin-RevId: 228077564
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect. Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results. LLVM IR made a similar choice. Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation. Handle signed division overflow and division by zero errors in
constant folding. Canonicalization is left for future work.
These operations are necessary to lower affine_apply's down to LLVM IR.
PiperOrigin-RevId: 228077549
Expand type to include matcher predicates. Use CNF form to allow specifying combinations of constraints for type. The matching call for the type is used to verify the construction of the operation as well as in rewrite pattern generation.
The matching initially includes redundant checks (e.g., even if the operand of the op is guaranteed to satisfy some requirement, it is still checked during matcher generation for now). As well as some of the traits specified now check what the generated code already checks. Some of the traits can be removed in future as the verify method will include the relevant checks based on the op definition already.
More work is needed for variadic operands.
CNF form is used so that in the follow up redundant checks in the rewrite patterns could be omitted (e.g., when matching a F32Tensor, one does not need to verify that op X's operand 0 is a Tensor if that is guaranteed by op X's definition). The alternative was to have single matcher function specified, but this would not allow for reasoning about what attributes already hold (at the level of PredAtoms).
Use this new operand type restrictions to rewrite BiasAdd with floating point operands as declarative pattern.
PiperOrigin-RevId: 227991412
- this is CL 1/2 that does a clean up and gets rid of one limitation in an
underlying method - as a result, fusion works for more cases.
- fix bugs/incomplete impl. in toAffineMapFromEq
- fusing across rank changing reshapes for example now just works
For eg. given a rank 1 memref to rank 2 memref reshape (64 -> 8 x 8) like this,
-loop-fusion -memref-dataflow-opt now completely fuses and inlines/store-forward
to get rid of the temporary:
INPUT
// Rank 1 -> Rank 2 reshape
for %i0 = 0 to 64 {
%v = load %A[%i0]
store %v, %B[%i0 floordiv 8, i0 mod 8]
}
for %i1 = 0 to 8
for %i2 = 0 to 8
%w = load %B[%i1, i2]
"foo"(%w) : (f32) -> ()
OUTPUT
$ mlir-opt -loop-fusion -memref-dataflow-opt fuse_reshape.mlir
#map0 = (d0, d1) -> (d0 * 8 + d1)
mlfunc @fuse_reshape(%arg0: memref<64xf32>) {
for %i0 = 0 to 8 {
for %i1 = 0 to 8 {
%0 = affine_apply #map0(%i0, %i1)
%1 = load %arg0[%0] : memref<64xf32>
"foo"(%1) : (f32) -> ()
}
}
}
AFAIK, there is no polyhedral tool / compiler that can perform such fusion -
because it's not really standard loop fusion, but possible through a
generalized slicing-based approach such as ours.
PiperOrigin-RevId: 227918338
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.
This CL adds a simple API call and relevant tests:
```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```
which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.
This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.
In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.
The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.
PiperOrigin-RevId: 227879021
This impl class currently provides the following:
* auto definition of the 'ImplType = StorageClass'
* get/getChecked wrappers around TypeUniquer
* 'verifyConstructionInvariants' hook
- This hook verifies that the arguments passed into get/getChecked are valid
to construct a type instance with.
With this, all non-generic type uniquing has been moved out of MLIRContext.cpp
PiperOrigin-RevId: 227871108
symbols.
Included with this is some other infra:
- Testcases for other canonicalizations that I will implement next.
- Some helpers in AffineMap/Expr for doing simple walks without defining whole
visitor classes.
- A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
- Allow index (and everything else) to work in memref's, as we previously
discussed, to make the testcase easier to write.
- A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
an enum.
This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)
PiperOrigin-RevId: 227852951
Use tablegen to generate definitions of the standard binary arithmetic
operations. These operations share a lot of boilerplate that is better off
generated by a tool.
Using tablegen for standard binary arithmetic operations requires the following
modifications.
1. Add a bit field `hasConstantFolder` to the base Op tablegen class; generate
the `constantFold` method signature if the bit is set. Differentiate between
single-result and zero/multi-result functions that use different signatures.
The implementation of the method remains in C++, similarly to canonicalization
patterns, since it may be large and non-trivial.
2. Define the `AnyType` record of class `Type` since `BinaryOp` currently
provided in op_base.td is supposed to operate on tensors and other tablegen
users may rely on this behavior.
Note that this drops the inline documentation on the operation classes that was
copy-pasted around anyway. Since we don't generate g3doc from tablegen yet,
keep LangRef.md as it is. Eventually, the user documentation can move to the
tablegen definition file as well.
PiperOrigin-RevId: 227820815
Even though it is unexpected except in pathological cases, a nullptr clone may
be returned. This CL handles the nullptr return gracefuly.
PiperOrigin-RevId: 227764615
The strict requirement (i.e. at least 2 HW vectors in a super-vector) was a
premature optimization to avoid interfering with other vector code potentially
introduced via other means.
This CL avoids this premature optimization and the spurious errors it causes
when super-vector size == HW vector size (which is a possible corner case).
This may be revisited in the future.
PiperOrigin-RevId: 227763966
This corner was found when stress testing with a functional end-to-end CPU
path. In the case where the hardware vector size is 1x...x1 the `keep` vector
is empty and would result a crash.
While there is no reason to expect a 1x...x1 HW vector in practice, this case
can just gracefully degrade to scalar, which is what this CL allows.
PiperOrigin-RevId: 227761097