The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.
GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16275
llvm-svn: 258145
Summary:
If Candiadte may have a different type from GEP, we should bitcast or
pointer cast it to GEP's type so that the later RAUW doesn't complain.
Added a test in nary-gep.ll
Reviewers: tra, meheff
Subscribers: mcrosier, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D15618
llvm-svn: 256035
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
Summary:
The instructions SeenExprs records may be deleted during rewriting.
FindClosestMatchingDominator should ignore these deleted instructions.
Fixes PR24301.
Reviewers: grosser
Subscribers: grosser, llvm-commits
Differential Revision: http://reviews.llvm.org/D13315
llvm-svn: 248983
Summary:
Refactor, NFC
Extracts computeOverflowForSignedAdd and isKnownNonNegative from NaryReassociate to ValueTracking in case
others need it.
Reviewers: reames
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D11313
llvm-svn: 245591
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
Summary:
nsw are flaky and can often be removed by optimizations. This patch enhances
nsw by leveraging @llvm.assume in the IR. Specifically, NaryReassociate now
understands that
assume(a + b >= 0) && assume(a >= 0) ==> a +nsw b
As a result, it can split more sext(a + b) into sext(a) + sext(b) for CSE.
Test Plan: nary-gep.ll
Reviewers: broune, meheff
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10822
llvm-svn: 241139
Summary:
This patch made two improvements to NaryReassociate and the NVPTX pipeline
1. Run EarlyCSE/GVN after NaryReassociate to get rid of redundant common
expressions.
2. When adding an instruction to SeenExprs, maps both the SCEV before and after
reassociation to that instruction.
Test Plan: updated @reassociate_gep_nsw in nary-gep.ll
Reviewers: meheff, broune
Reviewed By: broune
Subscribers: dberlin, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9947
llvm-svn: 238396
Summary:
x = &a[i];
y = &a[i + j];
=>
y = x + j;
along with some refactoring work such as extracting method
findClosestMatchingDominator.
Depends on D9786 which provides the ScalarEvolution::getGEPExpr interface.
Test Plan: nary-gep.ll
Reviewers: meheff, broune
Reviewed By: broune
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9802
llvm-svn: 237971
Avoid running forever by checking we are not reassociating an expression into
the same form.
Tested with @avoid_infinite_loops in nary-add.ll
llvm-svn: 237269
Summary:
An alternative is to use a worklist approach. However, that approach
would break the traversing order so that we couldn't lookup SeenExprs
efficiently. I don't see a clear winner here, so I picked the easier approach.
Along with two minor improvements:
1. preserves ScalarEvolution by forgetting instructions replaced
2. removes dead code locally avoiding the need of running DCE afterwards
Test Plan: add to slsr-add.ll a test that requires multiple iterations
Reviewers: broune, dberlin, atrick, meheff
Reviewed By: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9058
llvm-svn: 235151
Summary:
This fixes a left-over efficiency issue in D8950.
As Andrew and Daniel suggested, we can store the candidates in a stack
and pop the top element when it does not dominate the current
instruction. This reduces the worst-case time complexity to O(n).
Test Plan: a new test in nary-add.ll that exercises this optimization.
Reviewers: broune, dberlin, meheff, atrick
Reviewed By: atrick
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D9055
llvm-svn: 235129
Summary:
This transformation reassociates a n-ary add so that the add can partially reuse
existing instructions. For example, this pass can simplify
void foo(int a, int b) {
bar(a + b);
bar((a + 2) + b);
}
to
void foo(int a, int b) {
int t = a + b;
bar(t);
bar(t + 2);
}
saving one add instruction.
Fixes PR22357 (https://llvm.org/bugs/show_bug.cgi?id=22357).
Test Plan: nary-add.ll
Reviewers: broune, dberlin, hfinkel, meheff, sanjoy, atrick
Reviewed By: sanjoy, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8950
llvm-svn: 234855