Commit Graph

562 Commits

Author SHA1 Message Date
Philip Reames 4a3c3b66d7 [GVN] PRE of unordered loads
Again, fairly simple.  Only change is ensuring that we actually copy the property of the load correctly.  The aliasing legality constraints were already handled by the FRE patches.  There's nothing special about unorder atomics from the perspective of the PRE algorithm itself.

llvm-svn: 268804
2016-05-06 21:43:51 +00:00
Philip Reames 1fdce639d2 [GVN] Handle unordered atomics in cross block FRE
You'll note there are essentially no code changes here.  Cross block FRE heavily reuses code from the block local FRE.  All of the tricky parts were done as part of the previous patch and the refactoring that removed the original code duplication.  

llvm-svn: 268775
2016-05-06 18:46:45 +00:00
Philip Reames ae8997f496 [GVN] Do local FRE for unordered atomic loads
This patch is the first in a small series teaching GVN to optimize unordered loads aggressively. This change just handles block local FRE because that's the simplest thing which lets me test MDA, and the AvailableValue pieces. Somewhat suprisingly, MDA appears fine and only a couple of small changes are needed in GVN.

Once this is in, I'll tackle non-local FRE and PRE. The former looks like a natural extension of this, the later will require a couple of minor changes.

Differential Revision: http://reviews.llvm.org/D19440

llvm-svn: 268770
2016-05-06 18:17:13 +00:00
Chad Rosier 712b7d7630 [GVN] Minor code cleanup. NFC.
Differential Revision: http://reviews.llvm.org/D18828
Patch by Aditya Kumar!

llvm-svn: 267898
2016-04-28 16:00:15 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
David Majnemer d0ce8f1485 [GVN] Respect fast-math-flags on fcmps
We assumed that flags were only present on binary operators.  This is
not true, they may also be present on calls and fcmps.

llvm-svn: 267113
2016-04-22 06:37:51 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Mehdi Amini b550cb1750 [NFC] Header cleanup
Removed some unused headers, replaced some headers with forward class declarations.

Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'

Patch by Eugene Kosov <claprix@yandex.ru>

Differential Revision: http://reviews.llvm.org/D19219

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
2016-04-18 09:17:29 +00:00
Ulrich Weigand fc23907673 [GVN] Address review comments for D18662
As suggested by Chandler in his review comments for D18662, this
follow-on patch renames some variables in GetLoadValueForLoad and
CoerceAvailableValueToLoadType to hopefully make it more obvious
which variables hold value sizes and which hold load/store sizes.

No functional change intended.

llvm-svn: 265687
2016-04-07 15:55:11 +00:00
Ulrich Weigand 6e6966460a [GVN] Fix handling of sub-byte types in big-endian mode
When GVN wants to re-interpret an already available value in a smaller
type, it needs to right-shift the value on big-endian systems to ensure
the correct bytes are accessed.  The shift value is the difference of
the sizes of the two types.

This is correct as long as both types occupy multiples of full bytes.
However, when one of them is a sub-byte type like i1, this no longer
holds true: we still need to shift, but only to access the correct
*byte*.  Accessing bits within the byte requires no shift in either
endianness; e.g. an i1 resides in the least-significant bit of its
containing byte on both big- and little-endian systems.

Therefore, the appropriate shift value to be used is the difference of
the *storage* sizes of the two types.  This is already handled correctly
in one place where such a shift takes place (GetStoreValueForLoad), but
is incorrect in two other places: GetLoadValueForLoad and
CoerceAvailableValueToLoadType.

This patch changes both places to use the storage size as well.

Differential Revision: http://reviews.llvm.org/D18662

llvm-svn: 265684
2016-04-07 15:45:02 +00:00
Chandler Carruth ace8c8f765 [PM] Sink the "Expression" type for GVN into the class as a private
member type.

Because of how this type is used by the ValueTable, it cannot actually
have hidden visibility. GCC actually nicely warns about this but Clang
just silently ... I don't even know. =/ We should do a better job either
way though.

This should resolve a bunch of the GCC warnings about visibility that
the port of GVN triggered and make the visibility story a bit more
correct.

llvm-svn: 263250
2016-03-11 16:25:19 +00:00
Chandler Carruth 3bc9c7fb45 [PM] The order of evaluation of these analyses is actually significant,
much to my horror, so use variables to fix it in place.

This terrifies me. Both basic-aa and memdep will provide more precise
information when the domtree and/or the loop info is available. Because
of this, if your pass (like GVN) requires domtree, and then queries
memdep or basic-aa, it will get more precise results. If it does this in
the other order, it gets less precise results.

All of the ideas I have for fixing this are, essentially, terrible. Here
I've just caused us to stop having unspecified behavior as different
implementations evaluate the order of these arguments differently. I'm
actually rather glad that they do, or the fragility of memdep and
basic-aa would have gone on unnoticed. I've left comments so we don't
immediately break this again. This should fix bots whose host compilers
evaluate the order of arguments differently from Clang.

llvm-svn: 263231
2016-03-11 13:26:47 +00:00
Chandler Carruth b47f8010a9 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

llvm-svn: 263219
2016-03-11 11:05:24 +00:00
Chandler Carruth 89c45a162f [PM] Port GVN to the new pass manager, wire it up, and teach a couple of
tests to run GVN in both modes.

This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.

Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.

I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.

Differential Revision: http://reviews.llvm.org/D18019

llvm-svn: 263208
2016-03-11 08:50:55 +00:00
Chandler Carruth 7776377e62 [gvn] Fix more indenting and formatting in regions of code that will
need to be changed for porting to the new pass manager.

Also sink the comment on the ValueTable class back to that class instead
of it dangling on an anonymous namespace.

No functionality changed.

llvm-svn: 263084
2016-03-10 00:58:20 +00:00
Chandler Carruth 169c84f1cc [gvn] Reformat a chunk of the GVN code that is strangely indented prior
to restructuring it for porting to the new pass manager.

No functionality changed.

llvm-svn: 263083
2016-03-10 00:58:18 +00:00
Chandler Carruth 61440d225b [PM] Port memdep to the new pass manager.
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.

There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.

Differential Revision: http://reviews.llvm.org/D17962

llvm-svn: 263082
2016-03-10 00:55:30 +00:00
David Majnemer 01674939b2 Remove unused variable
llvm-svn: 260722
2016-02-12 20:33:51 +00:00
Philip Reames 96fccc2d09 [GVN] Common code for local and non-local load availability [NFCI]
The attached patch removes all of the block local code for performing X-load forwarding by reusing the code used in the non-local case.

The motivation here is to remove duplication and in the process increase our test coverage of some fairly tricky code. I have some upcoming changes I'll be proposing in this area and wanted to have the code cleaned up a bit first.

Note: The review for this mostly happened in email which didn't make it to phabricator on the 258882 commit thread.

Differential Revision: http://reviews.llvm.org/D16608

llvm-svn: 260711
2016-02-12 19:24:57 +00:00
Philip Reames 10e678d25a [GVN] Add clarifying assert [NFCI]
Just adding an assert which makes invariants between AnalyzeLoadsFromClobberingLoads and GetLoadValueForLoad slightly more clear.

llvm-svn: 259145
2016-01-29 02:23:10 +00:00
Philip Reames 8e785a4ec0 [GVN] Split AvailableValueInBlock into two parts [NFC]
AvailableValue is the part that represents the potential rematerialization.  AvailableValueInBlock is simply a pair of an AvailableValue and a BB which we might materialize it in.

This is motivated by http://reviews.llvm.org/D16608.  The intent is that we'll have a single function which handles the local case which both local and non-local will use to identify available values.  Once that's done, the local case can rematerialize at the use site and the non-local case can do the SSA construction as it does currently.

llvm-svn: 258882
2016-01-26 23:43:16 +00:00
Philip Reames 273dcb0d82 [GVN] Rearrange code to make local vs non-local cases more obvious [NFCI]
llvm-svn: 258747
2016-01-25 23:37:53 +00:00
Philip Reames 10a50b188e [GVN] Factor out common code [NFCI]
We had the same code duplicated for each type of Def.  We also have the entire block duplicated between the local and non-local case, but let's start with local cleanup.

llvm-svn: 258740
2016-01-25 23:19:12 +00:00
Eduard Burtescu 1423921a24 [opaque pointer types] [NFC] Add an explicit type argument to ConstantFoldLoadFromConstPtr.
Reviewers: mjacob, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D16418

llvm-svn: 258472
2016-01-22 01:17:26 +00:00
David L Kreitzer 4d7257dfa1 Fix for two constant propagation problems in GVN with the assume intrinsic
instruction.

Patch by Yuanrui Zhang.

Differential Revision: http://reviews.llvm.org/D16100

llvm-svn: 258435
2016-01-21 21:32:35 +00:00
Craig Topper e471cf32a0 Use range-based for loops. NFC
llvm-svn: 254222
2015-11-28 08:23:04 +00:00
Andrew Kaylor 0615a0e65d [WinEH] Fix a case where GVN could incorrectly PRE a load into an EH pad.
Differential Revision: http://reviews.llvm.org/D14842

llvm-svn: 253908
2015-11-23 19:51:41 +00:00
Weiming Zhao b69babd01e Fix bug 25440: GVN assertion after coercing loads
Optimizations like LoadPRE in GVN will insert new instructions.
If the insertion point is in a already processed BB, they should
get a value number explicitly. If the insertion point is after
current instruction, then just leave it. However, current GVN framework
has no support for it.
In this patch, we just bail out if a VN can't be found.

Dfferential Revision: http://reviews.llvm.org/D14670

A    test/Transforms/GVN/pr25440.ll
M    lib/Transforms/Scalar/GVN.cpp

llvm-svn: 253536
2015-11-19 02:45:18 +00:00
Mehdi Amini adb4057a15 Fix returned value for GVN: could return "false" even after modifying the IR
This bug would manifest in some very specific cases where all the following
conditions are fullfilled:

- GVN didn't remove block
- The regular GVN iteration didn't change the IR
- PRE is enabled
- PRE will not split critical edge
- The last instruction processed by PRE didn't change the IR

Because the CallGraph PassManager relies on this returned value to decide
if it needs to recompute a node after the execution of Function passes,
not returning the right value can lead to unexpected results.

Fix for: https://llvm.org/bugs/show_bug.cgi?id=24715

Patch by Wenxiang Qiu <vincentqiuuu@gmail.com>

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 253518
2015-11-18 22:49:49 +00:00
Mike Aizatsky c7810baaa6 Disable gvn non-local speculative loads under asan.
Summary: Fix for https://llvm.org/bugs/show_bug.cgi?id=25550

Differential Revision: http://reviews.llvm.org/D14763

llvm-svn: 253498
2015-11-18 20:43:00 +00:00
Philip Reames b6e8fe3dac [PRE] Preserve !invariant.load metadata
Spoted via inspection.  Test case included.

llvm-svn: 253275
2015-11-17 00:15:09 +00:00
Tobias Grosser 8241795d20 Revert "Fix bug 25440: GVN assertion after coercing loads"
This reverts 252919 which broke LNT: MultiSource/Applications/SPASS

llvm-svn: 252936
2015-11-12 20:04:21 +00:00
Weiming Zhao eed0145dd2 Fix bug 25440: GVN assertion after coercing loads
Summary:
when coercing loads, it inserts some instructions, which have no GV assigned.

https://llvm.org/bugs/show_bug.cgi?id=25440


Reviewers: hfinkel, dberlin

Subscribers: dberlin, llvm-commits

Differential Revision: http://reviews.llvm.org/D14479

llvm-svn: 252919
2015-11-12 18:19:59 +00:00
Tim Northover d4f55c0b1b GVN: don't try to replace instruction with itself.
After some look-ahead PRE was added for GEPs, an instruction could end
up in the table of candidates before it was actually inspected. When
this happened the pass might decide it was the best candidate to
replace itself. This didn't go well.

Should fix PR25291

llvm-svn: 251145
2015-10-23 20:30:02 +00:00
Duncan P. N. Exon Smith 3a9c9e3dcd Scalar: Remove some implicit ilist iterator conversions, NFC
Remove some of the implicit ilist iterator conversions in
LLVMScalarOpts.  More to go.

llvm-svn: 250197
2015-10-13 18:26:00 +00:00
Piotr Padlewski dc9b2cfc50 inariant.group handling in GVN
The most important part required to make clang
devirtualization works ( ͡°͜ʖ ͡°).
The code is able to find non local dependencies, but unfortunatelly
because the caller can only handle local dependencies, I had to add
some restrictions to look for dependencies only in the same BB.

http://reviews.llvm.org/D12992

llvm-svn: 249196
2015-10-02 22:12:22 +00:00
Piotr Padlewski a4d43337d4 gvn small fix
http://reviews.llvm.org/D12928

llvm-svn: 247935
2015-09-17 20:34:22 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Piotr Padlewski 0c7d8fc1f6 assuem(X) handling in GVN bugfix
There was infinite loop because it was trying to change assume(true) into
assume(true)
Also added handling when assume(false) appear

http://reviews.llvm.org/D12516

llvm-svn: 246697
2015-09-02 20:00:03 +00:00
Piotr Padlewski 28ffcbe1cc Constant propagation after hitting assume(cmp) bugfix
Last time code run into assertion `BBE.isSingleEdge()` in
lib/IR/Dominators.cpp:200.

http://reviews.llvm.org/D12170

llvm-svn: 246696
2015-09-02 19:59:59 +00:00
Piotr Padlewski 14e815c22b Constant propagation after hiting llvm.assume
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
  is constant we can change all variables with constants in the same BasicBlock

http://reviews.llvm.org/D11918

llvm-svn: 246695
2015-09-02 19:59:53 +00:00
Steven Wu 61db34d12e Revert r246244 and r246243
These two commits cause clang/llvm bootstrap to hang.

llvm-svn: 246279
2015-08-28 06:52:00 +00:00
Piotr Padlewski 3f81ec1e38 Constant propagation after hitting assume(cmp) bugfix
Last time code run into assertion `BBE.isSingleEdge()` in
lib/IR/Dominators.cpp:200.

http://reviews.llvm.org/D12170

llvm-svn: 246244
2015-08-28 01:02:00 +00:00
Piotr Padlewski 63cc5d4627 Constant propagation after hiting llvm.assume
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
  is constant we can change all variables with constants in the same BasicBlock

http://reviews.llvm.org/D11918

llvm-svn: 246243
2015-08-28 01:01:57 +00:00
Adrian Prantl cbdfdb74d3 Rename Instruction::dropUnknownMetadata() to dropUnknownNonDebugMetadata()
and make it always preserve debug locations, since all callers wanted this
behavior anyway.

This is addressing a post-commit review feedback for r245589.

NFC (inside the LLVM tree).

llvm-svn: 245622
2015-08-20 22:00:30 +00:00
Adrian Prantl baf90fc265 Fix a bug that caused SimplifyCFG to drop DebugLocs.
Instruction::dropUnknownMetadata(KnownSet) is supposed to preserve all
metadata in KnownSet, but the condition for DebugLocs was inverted.

Most users of dropUnknownMetadata() actually worked around this by not
adding LLVMContext::MD_dbg to their list of KnowIDs.
This is now made explicit.

llvm-svn: 245589
2015-08-20 18:24:02 +00:00
Adrian Prantl a317cd2583 Fix a debug location handling bug in GVN.
Caught by the famous "DebugLoc describes the currect SubProgram" assertion.

When GVN is removing a nonlocal load it updates the debug location of the
SSA value it replaced the load with with the one of the load. In the
testcase this actually overwrites a valid debug location with an empty one.

In reality GVN has to make an arbitrary choice between two equally valid
debug locations. This patch changes to behavior to only update the
location if the value doesn't already have a debug location.

llvm-svn: 245588
2015-08-20 18:23:56 +00:00
Justin Bogner 9f00ebaeda Revert "Constant propagation after hiting llvm.assume"
This was also failing bootstrap:

http://lab.llvm.org:8080/green/job/clang-stage2-configure-Rlto_build

This reverts r245265.

llvm-svn: 245269
2015-08-18 07:00:34 +00:00
Piotr Padlewski 94ca3783b8 Constant propagation after hiting llvm.assume
After hitting @llvm.assume(X) we can:
- propagate equality that X == true
- if X is icmp/fcmp (with eq operation), and one of operand
  is constant we can change all variables with constants in the same BasicBlock

http://reviews.llvm.org/D11918

llvm-svn: 245265
2015-08-18 03:55:30 +00:00