Legal if we have hardware support for floating point, libcalls
otherwise.
Also add the necessary support for libcalls in the legalizer helper.
llvm-svn: 323726
When a function return value can't be directly lowered, such as
returning an i128 on WebAssembly, as indicated by the CanLowerReturn
target hook, SelectionDAGBuilder can translate it to return the
value through a hidden sret-like argument.
If such a function has an argument with the "returned" attribute,
the attribute can't be automatically lowered, because the function
no longer has a normal return value. For now, just discard the
"returned" attribute.
This fixes PR36128.
llvm-svn: 323715
When RAFast sees liveins in on a basic block, it uses that information
to initialize the availability of the registers. The called
method uses an instruction as one of its argument and in the liveins
case, RAFast was dereferencing MBB::begin which can be MBB::end for
empty basic block.
Change the API of definePhysReg to use MachineBasicBlock::iterator
instead of MachineInstr so that we don't dereference an
invalid iterator while making the call.
rdar://problem/36952401
llvm-svn: 323710
Summary:
Apparently, we missed on constraining register classes of VReg-operands of all the instructions
built from a destination pattern but the root (top-level) one. The issue exposed itself
while selecting G_FPTOSI for armv7: the corresponding pattern generates VTOSIZS wrapped
into COPY_TO_REGCLASS, so top-level COPY_TO_REGCLASS gets properly constrained,
while nested VTOSIZS (or rather its destination virtual register to be exact) does not.
Fixing this by issuing GIR_ConstrainSelectedInstOperands for every nested GIR_BuildMI.
https://bugs.llvm.org/show_bug.cgi?id=35965
rdar://problem/36886530
Patch by Roman Tereshin
Reviewers: dsanders, qcolombet, rovka, bogner, aditya_nandakumar, volkan
Reviewed By: dsanders, qcolombet, rovka
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42565
llvm-svn: 323692
Prior to committing r323681, we decided to change pick() to identity() since
it wasn't clear from the name what pick() did. However, identity() isn't a very
good name either since it implies that no changes are made. For some reason,
naming it changeTo() didn't occur to me until just after the commit. This
should resolve the lack of clarity that pick() had while still implying that
it changes the MIR.
llvm-svn: 323689
Rafael pointed out that `hasInternalLinkage() || hasPrivateLinkage()` is
equivalent to `hasLocalLinkage()` in post-commit review.
I'm intentionally not updating the comment, partly because I like it
being explicit, and partly because "global symbols with local linkage"
sounds like an oxymoron.
llvm-svn: 323688
Summary:
As discussed in D42244, we have difficulty describing the legality of some
operations. We're not able to specify relationships between types.
For example, declaring the following
setAction({..., 0, s32}, Legal)
setAction({..., 0, s64}, Legal)
setAction({..., 1, s32}, Legal)
setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
{s32, s32}
{s64, s32}
{s32, s64}
{s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES have relationships between the types that are currently
described incorrectly.
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).
It's also difficult to control the legalization strategy. We've added support
for legalizing non-power of 2 types but there's still some hardcoded assumptions
about the strategy. The main one I've noticed is that type0 is always legalized
before type1 which is not a good strategy for `type0 = G_EXTRACT type1, ...` if
you need to widen the container. It will converge on the same result eventually
but it will take a much longer route when legalizing type0 than if you legalize
type1 first.
Lastly, the definition of legality and the legalization strategy is kept
separate which is not ideal. It's helpful to be able to look at a one piece of
code and see both what is legal and the method the legalizer will use to make
illegal MIR more legal.
This patch adds a layer onto the LegalizerInfo (to be removed when all targets
have been migrated) which resolves all these issues.
Here are the rules for shift and division:
for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV})
getActionDefinitions(BinOp)
.legalFor({s32, s64}) // If type0 is s32/s64 then it's Legal
.clampScalar(0, s32, s64) // If type0 is <s32 then WidenScalar to s32
// If type0 is >s64 then NarrowScalar to s64
.widenScalarToPow2(0) // Round type0 scalars up to powers of 2
.unsupported(); // Otherwise, it's unsupported
This describes everything needed to both define legality and describe how to
make illegal things legal.
Here's an example of a complex rule:
getActionDefinitions(G_INSERT)
.unsupportedIf([=](const LegalityQuery &Query) {
// If type0 is smaller than type1 then it's unsupported
return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
// If type0 is s32/s64/p0 and type1 is a power of 2 other than 2 or 4 then it's legal
// We don't need to worry about large type1's because unsupportedIf caught that.
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
return false;
return isPowerOf2_32(Ty1.getSizeInBits()) &&
(Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
})
.clampScalar(0, s32, s64)
.widenScalarToPow2(0)
.maxScalarIf(typeInSet(0, {s32}), 1, s16) // If type0 is s32 and type1 is bigger than s16 then NarrowScalar type1 to s16
.maxScalarIf(typeInSet(0, {s64}), 1, s32) // If type0 is s64 and type1 is bigger than s32 then NarrowScalar type1 to s32
.widenScalarToPow2(1) // Round type1 scalars up to powers of 2
.unsupported();
This uses a lambda to say that G_INSERT is unsupported when type0 is bigger than
type1 (in practice, this would be a default rule for G_INSERT). It also uses one
to describe the legal cases. This particular predicate is equivalent to:
.legalFor({{s32, s1}, {s32, s8}, {s32, s16}, {s64, s1}, {s64, s8}, {s64, s16}, {s64, s32}})
In terms of performance, I saw a slight (~6%) performance improvement when
AArch64 was around 30% ported but it's pretty much break even right now.
I'm going to take a look at constexpr as a means to reduce the initialization
cost.
Future work:
* Make it possible for opcodes to share rulesets. There's no need for
G_LSHR/G_ASHR/G_SDIV/G_UDIV to have separate rule and ruleset objects. There's
no technical barrier to this, it just hasn't been done yet.
* Replace the type-index numbers with an enum to get .clampScalar(Type0, s32, s64)
* Better names for things like .maxScalarIf() (clampMaxScalar?) and the vector rules.
* Improve initialization cost using constexpr
Possible future work:
* It's possible to make these rulesets change the MIR directly instead of
returning a description of how to change the MIR. This should remove a little
overhead caused by parsing the description and routing to the right code, but
the real motivation is that it removes the need for LegalizeAction::Custom.
With Custom removed, there's no longer a requirement that Custom legalization
change the opcode to something that's considered legal.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner
Reviewed By: bogner
Subscribers: hintonda, bogner, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42251
llvm-svn: 323681
Summary:
Fix a few places that were modifying code after register
allocation to set the renamable bit correctly to avoid failing the
validation added in D42449.
llvm-svn: 323675
Summary:
The improvements to the LegalizerInfo discussed in D42244 require that
LegalizerInfo::LegalizeAction be available for use in other classes. As such,
it needs to be moved out of LegalizerInfo. This has been done separately to the
next patch to minimize the noise in that patch.
llvm-svn: 323669
Microsoft Visual Studio rejects the static constexpr static list of
atoms even though it's valid C++. This provides a workaround to unbreak
the bots.
llvm-svn: 323667
MSVC complains that the constexpr "expression did not evaluate to a
constant". Trying to make it happy by adding a `const` specifier as
suggested in https://stackoverflow.com/questions/37574343.
llvm-svn: 323659
This patch adds support for generating accelerator tables in dsymutil.
This feature was already present in our internal repository but not yet
upstreamed because it requires changes to the Apple accelerator table
implementation.
Differential revision: https://reviews.llvm.org/D42501
llvm-svn: 323655
This patch renames DwarfAccelTable.{h,cpp} to AccelTable.{h,cpp} and
moves the header to the include dir so it is accessible by the
dsymutil implementation.
Differential revision: https://reviews.llvm.org/D42529
llvm-svn: 323654
This patch refactors the way data is stored in the accelerator table and
makes them truly generic. There have been several attempts to do this in
the past:
- D8215 & D8216: Using a union and partial hardcoding.
- D11805: Using inheritance.
- D42246: Using a callback.
In the end I didn't like either of them, because for some reason or
another parts of it felt hacky or decreased runtime performance. I
didn't want to completely rewrite them as I was hoping that we could
reuse parts for the successor in the DWARF standard. However, it seems
less and less likely that there will be a lot of opportunities for
sharing code and/or an interface.
Originally I choose to template the whole class, because it introduces
no performance overhead compared to the original implementation.
We ended up settling on a hybrid between a templated method and a
virtual call to emit the data. The motivation is that we don't want to
increase code size for a feature that should soon be superseded by the
DWARFv5 accelerator tables. While the code will continue to be used for
compatibility, it won't be on the hot path. Furthermore this does not
regress performance compared to Apple's internal implementation that
already uses virtual calls for this.
A quick summary for why these changes are necessary: dsymutil likes to
reuse the current implementation of the Apple accelerator tables.
However, LLDB expects a slightly different interface than what is
currently emitted. Additionally, in dsymutil we only have offsets and no
actual DIEs.
Although the patch suggests a lot of code has changed, this change is
pretty straightforward:
- We created an abstract class `AppleAccelTableData` to serve as an
interface for the different data classes.
- We created two implementations of this class, one for type tables and
one for everything else. There will be a third one for dsymutil that
takes just the offset.
- We use the supplied class to deduct the atoms for the header which
makes the structure of the table fully self contained, although not
enforced by the interface as was the case for the fully templated
approach.
- We renamed the prefix from DWARF- to Apple- to make space for the
future implementation of .debug_names.
This change is NFC and relies on the existing tests.
Differential revision: https://reviews.llvm.org/D42334
llvm-svn: 323653
Summary:
When emitting the location for a global variable with fragmented debug
expressions, make sure that the offset pieces, which represent
optimized-out parts of the variable, are emitted before their succeeding
fragments' expressions. Previously, if the succeeding fragment's
location was a symbol, the offset piece was emitted after, rather than
before, that symbol's expression. This effectively meant that the symbols
were associated with the wrong parts of the variable.
This fixes PR36085.
Patch by: David Stenberg
Reviewers: aprantl, probinson, dblaikie
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D42527
llvm-svn: 323644
Summary:
There's a check in the code to only check getSetCCResultType after LegalOperations or if the type is MVT::i1. But the i1 check is only allowing scalar types through. I think it should check that the scalar type is MVT::i1 so that it will work for vectors.
The changed test already does this combine with AVX512VL where getSetCCResultType returns vXi1. But with avx512f and no VLX getSetCCResultType returns a type matching the width of the input type.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42619
llvm-svn: 323631
This patch moves the DJB hash to support. This is consistent with other
hashing algorithms living there. The hash is used by the DWARF
accelerator tables. We're doing this now because the hashing function is
needed by dsymutil and we don't want to link against libBinaryFormat.
Differential revision: https://reviews.llvm.org/D42594
llvm-svn: 323616
The code was using getValueSizeInBits and combining with the result of a call to DAG.ComputeNumSignBits. But for vector types getValueSizeInBits returns the width of the full vector while ComputeNumSignBits is going to give a number no larger than the width of a single element. So we should be using getScalarValueSizeInBits to get the element width.
llvm-svn: 323583
We weren't converting the immediate ConstantFP during legalization, which caused
the wrong bit patterns to be emitted for half type FP constants.
Fixes PR36106.
llvm-svn: 323582
One common source of blocks with no successors is calls to noreturn
functions; we want to preserve pristine registers in case they throw an
exception.
The whole pristine register thing is messy (we should really prefer to
explicitly model registers), but this fills a hole in the model for now.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36073.
Differential Revision: https://reviews.llvm.org/D42509
llvm-svn: 323559
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
Summary: This is the producer side for DWARF v5 string offsets tables. The reader/consumer
side was committed with r321295. All compile and type units in a module share a
contribution to the string offsets table. Indirect strings use the strx{1,2,3,4} index forms.
Reviewers: dblaikie, aprantl, JDevliegehere
Differential Revision: https://reviews.llvm.org/D42021
llvm-svn: 323546
Add support for printing / parsing the addrspace of a MachineMemOperand.
Fixes PR35970.
Differential Revision: https://reviews.llvm.org/D42502
llvm-svn: 323521
https://reviews.llvm.org/D41373
The various components are
GICombinerHelper contains transformations that are common to all
targets. Targets can pick and choose which transformations (at
function/opcode granularity) each pass uses via configuring a
GICombinerInfo.
GICombiner contains some common code and it does the traversal,
driving of combines, worklist management and iterating until
convergence.
GICombinerInfo is an interface with a virtual method called combine.
The combiner info will allow targets to pick and choose (or
implement their own specific combines). CombineInfos can make
use of available combines in GICombineHelper to configure the
transformations for a particular pass. Currently this approach allows
cherry picking transformations from helpers (at function/opcode
granularity) and also allows early returning on specific
transformations. Targets also get to prioritize whether target specific
combines run before/after the opt-in generic combines. Ideally we would
like this part to be configured by both C++ and Tablegen. The
CombinerInfo also has a field which indicates how to deal with
IllegalOps (ie - should we allow to create them/or legalize them?).
A CombinerPass would configure a CombinerInfo, create the GICombiner
with the Info, and call
GICombiner::combineMachineInstrs(MachineFunction&).
This organization is very similar to the GISelLegalizer.
llvm-svn: 323392
Apparently checking the pass structure isn't enough to ensure that we don't fall
back to FastISel, as it's set up as part of the SelectionDAGISel.
llvm-svn: 323369
Summary:
`getAction(const InstrAspect &) const` breaks encapsulation by exposing
the smaller components that are used to decide how to legalize an
instruction.
This is a problem because we need to change the implementation of
LegalizerInfo so that it's able to describe particular type combinations
rather than just cartesian products of types.
For example, declaring the following
setAction({..., 0, s32}, Legal)
setAction({..., 0, s64}, Legal)
setAction({..., 1, s32}, Legal)
setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
{s32, s32}
{s64, s32}
{s32, s64}
{s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES has relationships between the types that are currently
described incorrectly.
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).
This patch introduces LegalityQuery which provides all the information
needed by the legalizer to make a decision on whether something is legal
and how to legalize it.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner
Reviewed By: bogner
Subscribers: bogner, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D42244
llvm-svn: 323342
Summary:
This patch implements the codegen of DWARF debug info for non-constant
'count' fields for DISubrange.
This is patch [2/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41696
llvm-svn: 323323
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
For the included test case, the DAG transformation
concat_vectors(scalar, undef) -> scalar_to_vector(sclr)
would attempt to create a v2i32 vector for a v9i8
concat_vector. Bail out to avoid creating a bitcast with
mismatching sizes later on.
Differential Revision: https://reviews.llvm.org/D42379
llvm-svn: 323312
Merging such globals loses the dllexport attribute. Add a test
to check that normal globals still are merged.
Differential Revision: https://reviews.llvm.org/D42127
llvm-svn: 323307
https://reviews.llvm.org/D42402
A lot of these copies are useless (copies b/w VRegs having the same
regclass) and should be cleaned up.
llvm-svn: 323291
Summary:
This adds an -mllvm flag that forces the use of a runtime function call to
get the unsafe stack pointer, the same that is currently used on non-x86, non-aarch64 android.
The call may be inlined.
Reviewers: pcc
Subscribers: aemerson, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37405
llvm-svn: 323259
Fix a bug in ScheduleDAGMILive::scheduleMI which causes BotRPTracker not tracking CurrentBottom in some rare cases involving llvm.dbg.value.
This issues causes amdgcn target to assert when compiling some user codes with -g.
Differential Revision: https://reviews.llvm.org/D42394
llvm-svn: 323214
If in complex addressing mode the difference is in GV then
base reg should not be installed because we plan to use
base reg as a merge point of different GVs.
This is a fix for PR35980.
Reviewers: reames, john.brawn, santosh
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42230
llvm-svn: 323192
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains).
2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings.
3. BreakFalseDeps - Breaks false dependencies.
4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks.
This also included the following changes to ExcecutionDepsFix original logic:
1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class.
2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class.
Additional changes in affected files:
1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate.
2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate.
Additional refactoring changes will follow.
This commit is (almost) NFC.
The only functional change is that now BreakFalseDeps will break dependency for all register classes.
Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet.
In a future commit several instructions (and tests) will be added.
This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.
Additional relevant reviews:
https://reviews.llvm.org/D40331https://reviews.llvm.org/D40332https://reviews.llvm.org/D40333https://reviews.llvm.org/D40334
Differential Revision: https://reviews.llvm.org/D40330
Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275
llvm-svn: 323087
This was completely broken, but hopefully fixed by this patch.
In cases where it is needed, a vector with non byte-sized elements is stored
by extracting, zero-extending, shift:ing and or:ing the elements into an
integer of the same width as the vector, which is then stored.
Review: Eli Friedman, Ulrich Weigand
https://reviews.llvm.org/D42100#inline-369520https://bugs.llvm.org/show_bug.cgi?id=35520
llvm-svn: 323042
`llvm.used` contains a list of pointers to named values which the
compiler, assembler, and linker are required to treat as if there is a
reference that they cannot see. Ensure that the symbols are preserved
by adding an explicit `-include` reference to the linker command.
llvm-svn: 323017
Previously, the DIBuilder didn't expose functionality to set its compile unit
in any other way than calling createCompileUnit. This meant that the outliner,
which creates new functions, had to create a new compile unit for its debug
info.
This commit adds an optional parameter in the DIBuilder's constructor which
lets you set its CU at construction.
It also changes the MachineOutliner so that it keeps track of the DISubprograms
for each outlined sequence. If debugging information is requested, then it
uses one of the outlined sequence's DISubprograms to grab a CU. It then uses
that CU to construct the DISubprogram for the new outlined function.
The test has also been updated to reflect this change.
See https://reviews.llvm.org/D42254 for more information. Also see the e-mail
discussion on D42254 in llvm-commits for more context.
llvm-svn: 322992
The second return value of ATOMIC_CMP_SWAP_WITH_SUCCESS is known to be a
boolean, and should therefore be treated by computeKnownBits just like
the second return values of SMULO / UMULO.
Differential Revision: https://reviews.llvm.org/D42067
llvm-svn: 322985
This avoids playing games with pseudo pass IDs and avoids using an
unreliable MRI::isSSA() check to determine whether register allocation
has happened.
Note that this renames:
- MachineLICMID -> EarlyMachineLICM
- PostRAMachineLICMID -> MachineLICMID
to be consistent with the EarlyTailDuplicate/TailDuplicate naming.
llvm-svn: 322927
Split TailDuplicatePass into EarlyTailDuplicate and TailDuplicate. This
avoids playing games with fake pass IDs and using MRI::isSSA() to
determine pre-/post-RA state.
llvm-svn: 322926
Re-commit of r322200: The testcase shouldn't hit machineverifiers
anymore with r322917 in place.
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322919
r322086 removed the trailing information describing reg classes for each
register.
This patch adds printing reg classes next to every register when
individual operands/instructions/basic blocks are printed. In the case
of dumping MIR or printing a full function, by default don't print it.
Differential Revision: https://reviews.llvm.org/D42239
llvm-svn: 322867
Follow-up to r322120 which can cause assertions for AArch64 because
v1f64 and v1i64 are legal types.
Differential Revision: https://reviews.llvm.org/D42097
llvm-svn: 322823
For example, a build_vector of i64 bitcasted from v2i32 can be turned into a concat_vectors of the v2i32 vectors with a bitcast to a vXi64 type
Differential Revision: https://reviews.llvm.org/D42090
llvm-svn: 322811
Right now, it is not possible to run MachineCSE in the middle of the
GlobalISel pipeline. Being able to run generic optimizations between the
core passes of GlobalISel was one of the goals of the new ISel framework.
This is the first attempt to do it.
The problem is that MachineCSE pass assumes all register operands have a
register class, which, in GlobalISel context, won't be true until after the
InstructionSelect pass. The reason for this behaviour is that before
replacing one virtual register with another, MachineCSE pass (and most of
the other optimization machine passes) must check if the virtual registers'
constraints have a (sufficiently large) intersection, and constrain the
resulting register appropriately if such intersection exists.
GlobalISel extends the representation of such constraints from just a
register class to a triple (low-level type, register bank, register
class).
This commit adds MachineRegisterInfo::constrainRegAttrs method that extends
MachineRegisterInfo::constrainRegClass to such a triple.
The idea is that going forward we should use:
- RegisterBankInfo::constrainGenericRegister within GlobalISel's
InstructionSelect pass
- MachineRegisterInfo::constrainRegClass within SelectionDAG ISel
- MachineRegisterInfo::constrainRegAttrs everywhere else regardless
the target and instruction selector it uses.
Patch by Roman Tereshin. Thanks!
llvm-svn: 322805
Before, it wasn't possible to get backtraces inside outlined functions. This
commit adds DISubprograms to the IR functions created by the outliner which
makes this possible. Also attached a test that ensures that the produced
debug information is correct. This is useful to users that want to debug
outlined code.
llvm-svn: 322789
Every known PE COFF target emits /EXPORT: linker flags into a .drective
section. The AsmPrinter should handle this.
While we're at it, use global_values() and emit each export flag with
its own .ascii directive. This should make the .s file output more
readable.
llvm-svn: 322788
Summary:
This patch adds a new target option in order to control GlobalISel.
This will allow the users to enable/disable GlobalISel prior to the
backend by calling `TargetMachine::setGlobalISel(bool Enable)`.
No test case as there is already a test to check GlobalISel
command line options.
See: CodeGen/AArch64/GlobalISel/gisel-commandline-option.ll.
Reviewers: qcolombet, aemerson, ab, dsanders
Reviewed By: qcolombet
Subscribers: rovka, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42137
llvm-svn: 322773
The code wasn't zero-extending correctly, so the comparison could
spuriously fail.
Adds some AArch64 tests to cover this case.
Inspired by D41791.
Differential Revision: https://reviews.llvm.org/D41798
llvm-svn: 322767
Mark G_FPEXT and G_FPTRUNC as legal or libcall, depending on hardware
support, but only for conversions between float and double.
Also add the necessary boilerplate so that the LegalizerHelper can
introduce the required libcalls. This also works only for float and
double, but isn't too difficult to extend when the need arises.
llvm-svn: 322651
Summary:
Currently -glldb turns on emission of apple tables on all targets, but
lldb is only really capable of consuming them on darwin. Furthermore,
making lldb consume these tables is not straight-forward because of the
differences in how the debug info is distributed on darwin vs. elf
targets.
The darwin debug model assumes that the debug info (along with
accelerator tables) will either remain in the .o files or it will be
linked into a dsym bundle by a linker that knows how to merge these
tables. In the elf world, all present linkers will simply concatenate
these accelerator tables into the shared object. Since the tables are
not self-terminating, this renders the tables unusable, as the debugger
cannot pry the individual tables apart anymore.
It might theoretically be possible to make the tables work with split
dwarf, as that is somewhat similar to the apple .o model, but
unfortunately right now the combination of -glldb and -gsplit-dwarf
produces broken object files.
Until these issues are resolved there is no point in emitting the apple
tables for these targets. At best, it wastes space; at worst, it breaks
compilation and prevents the user from getting other benefits of -glldb.
Reviewers: probinson, aprantl, dblaikie
Subscribers: emaste, dim, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41986
llvm-svn: 322633
Change symbol values in the stack_size section from being 8 bytes, to being a target dependent size.
Differential Revision: https://reviews.llvm.org/D42108
llvm-svn: 322619
r320606 checked for MI.isMetaInstruction which skips all DBG_VALUEs.
This also skips IMPLICIT_DEFs and other instructions that may def / read
a register.
Differential Revision: https://reviews.llvm.org/D42119
llvm-svn: 322584
Current condition for spill instruction recognition in LiveDebugValues does
not recognize case when register is spilled and killed in next instruction.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D41226
llvm-svn: 322554
*Mostly* NFC. Still updating the test though just for completeness.
This moves the hasAddressTaken check to MachineOutliner.cpp and replaces it
with a per-basic block test rather than a per-function test. The old test was
too conservative and was preventing functions in C programs from being
outlined even though they were safe to outline.
This was mostly a problem in C sources.
llvm-svn: 322425
Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
Pass MD5 checksums through from IR to assembly/object files.
After this, getting Clang to compute the MD5 should be the last step
to supporting MD5 in the DWARF v5 line table header.
Differential Revision: https://reviews.llvm.org/D41926
llvm-svn: 322391
For hard float with VFP4, it is legal. Otherwise, we use libcalls.
This needs a bit of support in the LegalizerHelper for soft float
because we didn't handle G_FMA libcalls yet. The support is trivial, as
the only difference between G_FMA and other libcalls that we already
handle is that it has 3 input operands rather than just 2.
llvm-svn: 322366
- Less unnecessary use of `auto`
- Add early `using RegSubRegPair(AndIdx) =` to avoid countless
`TargetInstrInfo::` qualifications.
- Use references instead of pointers where possible.
- Remove unused parameters.
- Rewrite the CopyRewriter class hierarchy:
- Pull out uncoalescable copy rewriting functionality into
PeepholeOptimizer class.
- Use an abstract base class to make it clear that rewriters are
independent.
- Remove unnecessary \brief in doxygen comments.
- Remove unused constructor and method from ValueTracker.
- Replace UseAdvancedTracking of ValueTracker with DisableAdvCopyOpt use.
llvm-svn: 322325
The PeepholeOptimizer would fail for vregs without a definition. If this
was caused by an undef operand abort to keep the code simple (so we
don't need to add logic everywhere to replicate the undef flag).
Differential Revision: https://reviews.llvm.org/D40763
llvm-svn: 322319
When replacing a PHI the PeepholeOptimizer currently takes the register
class of the register at the first operand. This however is not correct
if this argument has a subregister index.
As there is currently no API to query the register class resulting from
applying a subregister index to all registers in a class, we can only
abort in these cases and not perform the transformation.
This changes findNextSource() to require the end of all copy chains to
not use a subregister if there is any PHI in the chain. I had to rewrite
the overly complicated inner loop there to have a good place to insert
the new check.
This fixes https://llvm.org/PR33071 (aka rdar://32262041)
Differential Revision: https://reviews.llvm.org/D40758
llvm-svn: 322313
Summary:
Fold cases such as:
(v8i8 truncate (v8i32 extract_subvector (v16i32 sext (v16i8 V), Idx)))
->
(v8i8 extract_subvector (v16i8 V), Idx)
This can be generalized to cases where the truncate and extend do not
fully cancel each other out, but it may require querying the target
about profitability.
Reviewers: RKSimon, craig.topper, spatel, efriedma
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41927
llvm-svn: 322300
The code that is supposed to "Round odd types to the next pow of two" seems
broken and as well completely unused (untested). It also seems that
ExpandStore really shouldn't ever change the memory VT, which this in fact
does.
As a first step in fixing the broken handling of vector stores (of irregular
types, e.g. an i1 vector), this code is removed. For discussion, see
https://bugs.llvm.org/show_bug.cgi?id=35520.
Review: Eli Friedman
llvm-svn: 322275
Summary:
- MSVC uses the none type for a variadic argument in CodeView
- Add a unit test
Reviewers: zturner, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D41931
llvm-svn: 322257
Revert for now as the testcase is hitting a pre-existing verifier error
that manifest as a failure when expensive checks are enabled (or
-verify-machineinstrs) is used.
This reverts commit r322200.
llvm-svn: 322231
Simplify the code slightly: Instead of creating empty subranges in one
case and immediately removing them, do not create them in the first
place.
llvm-svn: 322226
Make sure I really get back to the beahvior before my rewrite in r321035
which turned out not to be completely NFC as I changed the behavior for
the ios simulator environment.
llvm-svn: 322223
Currently we infer the scale at isel time by analyzing whether the base is a constant 0 or not. If it is we assume scale is 1, else we take it from the element size of the pass thru or stored value. This seems a little weird and I think it makes more sense to make it explicit in the DAG rather than doing tricky things in the backend.
Most of this patch is just making sure we copy the scale around everywhere.
Differential Revision: https://reviews.llvm.org/D40055
llvm-svn: 322210
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322200
Prefetches used to always be chained between any previous and following
memory accesses. The problem with this was that later optimizations, such as
folding of a load into the user instruction, got disrupted.
This patch relaxes the chaining of prefetches in order to remedy this.
Reveiw: Hal Finkel
https://reviews.llvm.org/D38886
llvm-svn: 322163
Planning to add support for named vregs. This puts is in a conundrum since
physregs are named as well. To rectify this we need to use a sigil other than
'%' for physregs in MIR. We've settled on using '$' for physregs but first we
must repurpose it from external symbols using it, which is what this commit is
all about. We think '&' will have familiar semantics for C/C++ users.
llvm-svn: 322146
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
The original patch didn't have the lit.local.cfg file that restricts the new
test to x86, thus the new test was failing on the non-x86 bots.
Differential Revision: https://reviews.llvm.org/D40531
The reverts r322008, which was a revert of r322005.
This reverts commit a05b89f9aca70597dc79fe97bc49b50b51f525ba.
llvm-svn: 322136
Summary:
In the case of an fp_extend of v1f16 to v1f32 where the v1f16 is the
result of a bitcast from i16, avoid creating an illegal fp16_to_fp where
the input is not a vector and the result is a v1f32.
V2: The fix is now to avoid vector scalarization creating a v1->scalar
bitcast.
Reviewers: srhines, t.p.northover
Subscribers: nhaehnle, llvm-commits, dstuttard, t-tye, yaxunl, wdng, kzhuravl, arsenm
Differential Revision: https://reviews.llvm.org/D41126
llvm-svn: 322120
In -debug output we print "pred:" whenever a MachineOperand is a
predicate operand in the instruction descriptor, and "opt:" whenever a
MachineOperand is an optional def in the instruction descriptor.
Differential Revision: https://reviews.llvm.org/D41870
llvm-svn: 322096
Currently the MachineInstr::print function prints the
frame-setup/frame-destroy differently than it does in MIR.
Instead of:
%x21 = LDR %sp, -16; flags: FrameDestroy
print:
%x21 = frame-destroy LDR %sp, -16
llvm-svn: 322088
Ingredients in this patch:
1. Add HANDLE_LIBCALL defs for finite mathlib functions that correspond to LLVM intrinsics.
2. Plumbing to send TargetLibraryInfo down to SelectionDAGLegalize.
3. Relaxed math and library checking in SelectionDAGLegalize::ConvertNodeToLibcall() to choose finite libcalls.
There was a bug about determining the availability of the finite calls that should be fixed with:
rL322010
Not in this patch:
This doesn't resolve the question/bug of clang creating the intrinsic IR in the first place.
There's likely follow-up work needed to support the long double variants better.
There's room for improvement to reduce the code duplication.
Create finite calls that don't originate from a corresponding intrinsic or DAG node?
Differential Revision: https://reviews.llvm.org/D41338
llvm-svn: 322087
Since register classes and banks are already printed with the register
definition, don't print it at the end of every instruction anymore.
This follows MIR in this regard and is another step to the unification
of the two formats.
llvm-svn: 322086
We are printing / parsing the `frame-setup` MachineInstr flag but not
the `frame-destroy` one.
Differential Revision: https://reviews.llvm.org/D41509
llvm-svn: 322071
If the offset is differ in two addressing mode we can continue only if
ScaleReg is not set due to we will use it as merge of different offsets.
It should fix PR35799 and PR35805.
Reviewers: john.brawn, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41227
llvm-svn: 322056
This commit does two things. Firstly, it adds a collection of flags which can
be passed along to the target to encode information about the MBB that an
instruction lives in to the outliner.
Second, it adds some of those flags to the AArch64 outliner in order to add
more stack instructions to the list of legal instructions that are handled
by the outliner. The two flags added check if
- There are calls in the MachineBasicBlock containing the instruction
- The link register is available in the entire block
If the link register is available and there are no calls, then a stack
instruction can always be outlined without fixups, regardless of what it is,
since in this case, the outliner will never modify the stack to create a
call or outlined frame.
The motivation for doing this was checking which instructions are most often
missed by the outliner. Instructions like, say
%sp<def> = ADDXri %sp, 32, 0; flags: FrameDestroy
are very common, but cannot be outlined in the case that the outliner might
modify the stack. This commit allows us to outline instructions like this.
llvm-svn: 322048
The last iterator of MBB should be recognized as MBB.end() not as
MBB.instr_end() which could return bundled instruction that is not iterable
with basic iterator.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D41626
llvm-svn: 322015
The new test fails on the Hexagon bot. Reverting while I investigate.
This reverts https://reviews.llvm.org/rL322005
This reverts commit b7e0026b4385180c378edc658ec91a39566f2942.
llvm-svn: 322008
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
Differential Revision: https://reviews.llvm.org/D40531
llvm-svn: 322005
Allow SimplifyDemandedBits to use TargetLoweringOpt::computeKnownBits to look through bitcasts. This can help simplifying in some cases where bitcasts of constants generated during or after legalization can't be folded away, and thus didn't get picked up by SimplifyDemandedBits. This fixes PR34620, where a redundant pand created during legalization from lowering and lshr <16xi8> wasn't being simplified due to the presence of a bitcasted build_vector as an operand.
Committed on the behalf of @sameconrad (Sam Conrad)
Differential Revision: https://reviews.llvm.org/D41643
llvm-svn: 321969
Summary:
There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type.
It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway.
This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly.
We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added.
I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all.
There's definitely room for improvement with some follow up patches.
Reviewers: RKSimon, zvi, guyblank
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41560
llvm-svn: 321967
Summary:
I believe legalization is really expecting that ReplaceNodeResults will return something with the same type as the thing that's being legalized. Ultimately, it uses the output to replace the uses in the DAG so the type should match to make that work.
There are two relevant cases here. When crbits are enabled, then i1 is a legal type and getSetCCResultType should return i1. In this case, the truncate will be between i1 and i1 and should be removed (SelectionDAG::getNode does this). Otherwise, getSetCCResultType will be i32 and the legalizer will promote the truncate to be i32 -> i32 which will be similarly removed.
With this fixed we can remove some code from PromoteIntRes_SETCC that seemed to only exist to deal with the intrinsic being replaced with a larger type without changing the other operand. With the truncate being used for connectivity this doesn't happen anymore.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: nemanjai, llvm-commits, kbarton
Differential Revision: https://reviews.llvm.org/D41654
llvm-svn: 321959
This is the last step needed to fix PR33325:
https://bugs.llvm.org/show_bug.cgi?id=33325
We're trading branch and compares for loads and logic ops.
This makes the code smaller and hopefully faster in most cases.
The 24-byte test shows an interesting construct: we load the trailing scalar
elements into vector registers and generate the same pcmpeq+movmsk code that
we expected for a pair of full vector elements (see the 32- and 64-byte tests).
Differential Revision: https://reviews.llvm.org/D41714
llvm-svn: 321934
This had been reverted because the new test failed on non-X86 bots. I moved
the new test to the appropriate subdirectory to correct this.
Differential Revision: https://reviews.llvm.org/D41264
Original submission: r321122 (which was reverted by r321125)
This reverts commit 3c1639b5703c387a0d8cba2862803b4e68dff436.
llvm-svn: 321911
Summary:
This commit updates the BufferByteStreamer, used by DebugLocStream
to buffer bytes/comments to put in the debug_loc section, to
make sure that the Buffer and Comments vectors are synced.
Previously, when an SLEB128 or ULEB128 was emitted together with
a comment, the vectors could be out-of-sync if the LEB encoding
added several entries to the Buffer vectors, while we only added
a single entry to the Comments vector.
The goal with this is to get the comments in the debug_loc
section in the .s file correctly aligned.
Example (using ARM as target):
Instead of
.byte 144 @ sub-register DW_OP_regx
.byte 128 @ 256
.byte 2 @ DW_OP_piece
.byte 147 @ 8
.byte 8 @ sub-register DW_OP_regx
.byte 144 @ 257
.byte 129 @ DW_OP_piece
.byte 2 @ 8
.byte 147 @
.byte 8 @
we now get
.byte 144 @ sub-register DW_OP_regx
.byte 128 @ 256
.byte 2 @
.byte 147 @ DW_OP_piece
.byte 8 @ 8
.byte 144 @ sub-register DW_OP_regx
.byte 129 @ 257
.byte 2 @
.byte 147 @ DW_OP_piece
.byte 8 @ 8
Reviewers: JDevlieghere, rnk, aprantl
Reviewed By: aprantl
Subscribers: davide, Ka-Ka, uabelho, aemerson, javed.absar, kristof.beyls, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41763
llvm-svn: 321907
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1
This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:
// S is not trivially copyable because of the explicit destructor.
struct S {
~S() {}
};
// T is a POD type.
struct T {
~T() = default;
};
This patch adds two new (DI)flags to LLVM metadata: TypePassByValue
and TypePassByReference.
<rdar://problem/36034922>
Differential Revision: https://reviews.llvm.org/D41743
llvm-svn: 321844
The existing version worked incorrectly when inversion of a branch condintion is impossible.
Changed the "fixupConditionalBranch()" function - a new BB (a trampoline) is created to keep the original branch condition.
Differential Revision: https://reviews.llvm.org/D41634
llvm-svn: 321785
Add iterator ranges for machine instruction phis, similar to the IR-level
phi ranges added in r303964. I updated a few places to use this. Besides
general code simplification, this change will allow removing a non-upstream
change from Swift's copy of LLVM (in a better way than my previous attempt
in http://reviews.llvm.org/D19080).
https://reviews.llvm.org/D41672
llvm-svn: 321783
Handle this in DAGCombiner::visitEXTRACT_VECTOR_ELT the same as we already do in SelectionDAG::getNode and use APInt instead of getZExtValue.
This should also fix oss-fuzz #4910
llvm-svn: 321767
The preference only applies to 'memcmp() == 0' expansion, so try to make that clearer.
x86 will likely benefit by increasing the default value from '1' to '2' as seen in PR33325:
https://bugs.llvm.org/show_bug.cgi?id=33325
...so that is the planned follow-up to this clean-up step.
llvm-svn: 321756
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
Previously the code for handling G_SMULO didn't properly check for the signed
multiply overflow, instead treating it the same as the unsigned G_UMULO.
Fixes PR35800.
llvm-svn: 321690
A call may have an intrinsic name but not have a valid intrinsic ID,
for example with llvm.invariant.group.barrier. If so, treat it as a
normal call like FastISel does.
llvm-svn: 321662
Tests updated to explicitly use fast-isel at -O0 instead of implicitly.
This change also allows an explicit -fast-isel option to override an
implicitly enabled global-isel. Otherwise -fast-isel would have no effect at -O0.
Differential Revision: https://reviews.llvm.org/D41362
llvm-svn: 321655
Our internal testing has revealed has discovered bugs in PPC builds.
I have forward reproduction instructions to the original author (Nirav).
llvm-svn: 321649
Currently the promotion for these ignores the normal getTypeToPromoteTo and instead just tries to double the element width. This is because the default behavior of getTypeToPromote to just adds 1 to the SimpleVT, which has the affect of increasing the element count while keeping the scalar size the same.
If multiple steps are required to get to a legal operation type, int_to_fp will be promoted multiple times. And fp_to_int will keep trying wider types in a loop until it finds one that works.
getTypeToPromoteTo does have the ability to query a promotion map to get the type and not do the increasing behavior. It seems better to just let the target specify the promotion type in the map explicitly instead of letting the legalizer iterate via widening.
FWIW, it's worth I think for any other vector operations that need to be promoted, we have to specify the type explicitly because the default behavior of getTypeToPromote isn't useful for vectors. The other types of promotion already require either the element count is constant or the total vector width is constant, but neither happens by incrementing the SimpleVT enum.
Differential Revision: https://reviews.llvm.org/D40664
llvm-svn: 321629
Fix code in LiveDebugVariables that was changing def MachineOperands to
uses, which will hit an assert for dead operands after the change to add
the renamable bit to MachineOperands. Avoid the assert by clearing the
dead bit before changing the operand to a use.
Fixes issue reported in out of tree target by Jesper Antonsson at Ericsson.
llvm-svn: 321571
Summary:
I have been getting rather difficult to reproduce SIGBUS crashes when
compiling certain FreeBSD sources, and their stack traces pointed
squarely at `SelectionDAG::salvageDebugInfo()`:
```
Core was generated by `/usr/obj/share/dim/src/freebsd/clang600-import/amd64.amd64/tmp/usr/bin/cc -cc1 -'.
Program terminated with signal SIGBUS, Bus error.
#0 isInvalidated () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h:115
115 bool isInvalidated() const { return Invalid; }
(gdb) bt
#0 isInvalidated () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h:115
#1 salvageDebugInfo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7116
#2 0x00000000033b2516 in operator() () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3595
#3 __invoke<(lambda at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3593:59) &, llvm::SDNode *, llvm::SDNode *> () at /usr/include/c++/v1/type_traits:4323
#4 __call<(lambda at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3593:59) &, llvm::SDNode *, llvm::SDNode *> () at /usr/include/c++/v1/__functional_base:349
#5 operator() () at /usr/include/c++/v1/functional:1562
#6 0x00000000033b0817 in operator() () at /usr/include/c++/v1/functional:1916
#7 NodeDeleted () at /share/dim/src/freebsd/clang600-import/contrib/llvm/include/llvm/CodeGen/SelectionDAG.h:293
#8 0x0000000003529dde in RemoveDeadNodes () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:610
#9 0x00000000035556df in MorphNodeTo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:6794
#10 0x00000000033a9acc in MorphNode () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:2594
#11 0x00000000033ac80b in SelectCodeCommon () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:3601
#12 0x00000000023d464b in SelectCode () at /usr/obj/share/dim/src/freebsd/clang600-import/amd64.amd64/tmp/obj-tools/lib/clang/libllvm/X86GenDAGISel.inc:282902
#13 Select () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp:3072
#14 0x00000000033a5afa in DoInstructionSelection () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:988
#15 0x00000000033a4e1a in CodeGenAndEmitDAG () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:868
#16 0x00000000033a2643 in SelectAllBasicBlocks () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1624
#17 0x000000000339f158 in runOnMachineFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:466
#18 0x00000000023d03c4 in runOnMachineFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp:175
#19 0x00000000035cc8c2 in runOnFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp:62
#20 0x00000000030dca9a in runOnFunction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1520
#21 0x00000000030dccf3 in runOnModule () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1541
#22 0x00000000030dd228 in runOnModule () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1597
#23 run () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/IR/LegacyPassManager.cpp:1700
#24 0x00000000014db578 in EmitAssembly () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp:815
#25 EmitBackendOutput () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp:1181
#26 0x00000000014d5b26 in HandleTranslationUnit () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp:292
#27 0x0000000001c4c332 in ParseAST () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp:159
#28 0x00000000015d546c in Execute () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp:897
#29 0x0000000001cec311 in ExecuteAction () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp:991
#30 0x00000000014b4f81 in ExecuteCompilerInvocation () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp:252
#31 0x00000000014aa73f in cc1_main () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/cc1_main.cpp:221
#32 0x00000000014b2928 in ExecuteCC1Tool () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/driver.cpp:309
#33 main () at /share/dim/src/freebsd/clang600-import/contrib/llvm/tools/clang/tools/driver/driver.cpp:388
(gdb) frame 1
#1 salvageDebugInfo () at /share/dim/src/freebsd/clang600-import/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7116
7116 if (DV->isInvalidated())
(gdb) disassemble
Dump of assembler code for function salvageDebugInfo():
[...]
0x0000000003557348 <+744>: nopl 0x0(%rax,%rax,1)
0x0000000003557350 <+752>: mov (%r12),%r13
=> 0x0000000003557354 <+756>: cmpb $0x0,0x31(%r13)
0x0000000003557359 <+761>: jne 0x35573b0 <salvageDebugInfo()+848>
(gdb) info registers
[...]
r13 0x5a5a5a5a5a5a5a5a 6510615555426900570
```
The `0x5a5a5a5a5a5a5a5a` value in `r13` indicates the memory was either
uninitialized, or already freed.
Unfortunately I do not have a simple self-contained test case for this.
However, it seems pretty clear that the call to `AddDbgValue()` in
`salvageDebugInfo()` causes the problems, since it modifies
`SelectionDag::DbgInfo` while looping through one of its DenseMaps:
```
void SelectionDAG::salvageDebugInfo(SDNode &N) {
[...]
for (auto DV : GetDbgValues(&N)) {
if (DV->isInvalidated())
continue;
[...]
AddDbgValue(Clone, N0.getNode(), false);
[...]
}
}
```
At least, if I comment out the `AddDbgValue()` call, the crashes go
away. I propose to change this function slightly, similar to the
`SelectionDAG::transferDbgValues()` function just above it, to save the
cloned SDDbgValues in a separate SmallVector, and only call
AddDbgValue() on them after the for loop is done.
Reviewers: aprantl, bogner, bkramer, davide
Reviewed By: davide
Subscribers: davide, krytarowski, JDevlieghere, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D41589
llvm-svn: 321545
For example, float operations may fail to constant fold under certain circumstances (inf/nan/denormal creation etc.)
Reduced from oss-fuzz #4802 test case
llvm-svn: 321488
This moves the combine for turning ANDs into shuffle with zero out of SimplifyVBinOps and places it only in visitAND below the reassociate handling. This fixes the specific case I noticed where we failed to combine two ands with constants.
llvm-svn: 321417
getOperand returns an SDValue that contains the node and the result number. There is no guarantee that the result number if 0. By using the -> operator we are calling SDNode::getValueType rather than SDValue::getValueType. This requires supplying a result number and we shouldn't assume it was 0.
I don't have a test case. Just noticed while cleaning up some other code and saw that it occurred in other places.
llvm-svn: 321397
BaseIndexOffset supercedes findBaseOffset analysis save only Constant
Pool addresses. Migrate analysis to BaseIndexOffset.
Relanding after correcting base address matching check.
llvm-svn: 321389
Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375
This seems to improve X86's ability to match this into an address computation. Otherwise the other operand gets assigned to the base register and the stack pointer + frame index ends up in the index register. But index registers can't encode ESP/RSP so we end up having to move it into another register to meet the constraint.
I could try to improve the address matcher in X86, but swapping the producer seemed easier. Several other places already have the operands in this order so this is at least consistent.
llvm-svn: 321370
Summary:
This replaces calls to getEntryCount().hasValue() with hasProfileData
that does the same thing. This refactoring is useful to do before adding
synthetic function entry counts but also a useful cleanup IMO even
otherwise. I have used hasProfileData instead of hasRealProfileData as
David had earlier suggested since I think profile implies "real" and I
use the phrase "synthetic entry count" and not "synthetic profile count"
but I am fine calling it hasRealProfileData if you prefer.
Reviewers: davidxl, silvas
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41461
llvm-svn: 321331
The knownbits_mask_or_shuffle_uitofp change is interesting - shuffle combines manage to kick in, removing the AND constant mask load. For targets with fast-variable-shuffle this should reduce further to VPOR+VPSHUFB+VCVTDQ2PS.
llvm-svn: 321279
If the SRL node is only used by an AND, we may be able to set the
ExtVT to the width of the mask, making the AND redundant. To support
this, another check has been added in isLegalNarrowLoad which queries
whether the load is valid.
Differential Revision: https://reviews.llvm.org/D41350
llvm-svn: 321259
Summary:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321234
When intrinsics are allowed to have mem operands, there
are two ways this can happen. First is an intrinsic
that is marked has having a mem operand, but is not handled
by getTgtMemIntrinsic.
The second way can occur even for intrinsics which do not
have a mem operand. It seems the selector table does
some kind of sorting based on the opcode, and the
mem ref recording can happen in the same scope for
intrinsics that both do and do not have mem refs.
I haven't been able to figure out exactly why this happens
(although it happens even with the matcher optimizations disabled).
I'm not sure if it's worth trying to avoid hitting this for
these nodes since I think it's still reasonable to handle
this in case getTgtMemIntrinic is not implemented.
llvm-svn: 321208
Summary:
The function section prefix for PGO based layout (e.g. hot/unlikely)
should look at the hotness of all blocks not just the entry BB.
A function with a cold entry but a very hot loop should be placed in the
hot section, for example, so that it is located close to other hot
functions it may call. For SamplePGO it was already looking at the
branch weights on calls, and I made that code conditional on whether
this is SamplePGO since it was essentially a noop for instrumentation
PGO anyway.
Reviewers: davidxl
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D41395
llvm-svn: 321197
These functions simply call their counterparts in the associated SDNode,
which do take an optional SelectionDAG. This change makes the legalization
debug trace a little easier to read, since target-specific nodes will
now have their names shown instead of "Unknown node #123".
llvm-svn: 321180
It appears the code uses nullptr to represent a void type in debug metadata,
which led to an assertion failure when building DeltaAlgorithm.cpp with a
self-hosted clang on Windows.
I'm not sure why/if the problem was Windows-specific.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=35543
Differential Revision: https://reviews.llvm.org/D41264
llvm-svn: 321122
Work towards the unification of MIR and debug output by refactoring the
interfaces.
Also add support for printing with a null TargetIntrinsicInfo and no
MachineFunction.
llvm-svn: 321111
Another followup to my refactoring in r321036: Turns out we can end up
with an x86 darwin target that is not macos (simulator triples can look
like i386-apple-ios) so we need the x86/32bit check in all cases.
llvm-svn: 321104
Summary:
Extend overlapping store elision to handle overwrites of stores by
larger stores.
Nontemporal tests have been modified to add memory dependencies to
prevent store elision.
Reviewers: craig.topper, rnk, t.p.northover
Subscribers: javed.absar, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40969
llvm-svn: 321089
Work towards the unification of MIR and debug output by refactoring the
interfaces.
Before this patch we printed "<call frame instruction>" in the debug
output.
llvm-svn: 321084
I missed some prefixes and the fact that on AArch64 we use "bzero"
instead of "__bzero" as on X86 when doing my refactoring in r321035.
Improve tests for bzero.
llvm-svn: 321046
I missed the fact that the later called InitLibcallCallingConvs()
overrides some things set in InitLibcalls() when I did the refactoring
in r321036.
Fix by merging InitLibcallCallingConvs() into InitLibcalls() and doing
the initialization earlier.
llvm-svn: 321045
Note:
- X86ISelLowering: setLibcallName(SINCOS) was superfluous as
InitLibcalls() already does it.
- ARMISelLowering: Setting libcallnames for sincos/sincosf seemed
superfluous as in the darwin case it wouldn't be used while for all
other cases InitLibcalls already does it.
llvm-svn: 321036
Adds missing support for DW_FORM_data16.
Update of r320852/r320886, fixing the unittest again, this time use a
raw char string for the test data.
Differential Revision: https://reviews.llvm.org/D41090
llvm-svn: 321011
Search from AND nodes to find whether they can be propagated back to
loads, so that the AND and load can be combined into a narrow load.
We search through OR, XOR and other AND nodes and all bar one of the
leaves are required to be loads or constants. The exception node then
needs to be masked off meaning that the 'and' isn't removed, but the
loads(s) are narrowed still.
Differential Revision: https://reviews.llvm.org/D41177
llvm-svn: 320962
When we put the value in select placeholder we must pass
the value through simplification tracker due to the value might
be already simplified and erased.
This is a fix for PR35658.
Reviewers: john.brawn, uabelho
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41251
llvm-svn: 320956
Adds missing support for DW_FORM_data16.
Update of r320852, fixing the unittest to use a hand-coded struct
instead of std::array to guarantee data layout.
Differential Revision: https://reviews.llvm.org/D41090
llvm-svn: 320886
Summary:
Currently we don't handle v32i1/v64i1 insert_vector_elt correctly as we fail to look at the number of elements closely and assume it can only be v16i1 or v8i1.
We also can't type legalize v64i1 insert_vector_elt correctly on KNL due to the type not being byte addressable as required by the legalizing through memory accesses path requires.
For the first issue, the patch now tries to pick a 512-bit register with the correct number of elements and promotes to that.
For the second issue, we now extend the vector to a byte addressable type, do the stores to memory, load the two halves, and then truncate the halves back to the original type. Technically since we changed the type, we may not need two loads, but actually checking that is more work and for the v64i1 case we do need them.
Reviewers: RKSimon, delena, spatel, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40942
llvm-svn: 320849
Work towards the unification of MIR and debug output by printing
`%stack.0` instead of `<fi#0>`, and `%fixed-stack.0` instead of
`<fi#-4>` (supposing there are 4 fixed stack objects).
Only debug syntax is affected.
Differential Revision: https://reviews.llvm.org/D41027
llvm-svn: 320827
The following CFI directives are suported by MC but not by MIR:
* .cfi_rel_offset
* .cfi_adjust_cfa_offset
* .cfi_escape
* .cfi_remember_state
* .cfi_restore_state
* .cfi_undefined
* .cfi_register
* .cfi_window_save
Add support for printing, parsing and update tests.
Differential Revision: https://reviews.llvm.org/D41230
llvm-svn: 320819
This makes it work better with some build_vector and concat_vectors creations.
Adjust the NewSDValueDbgMsg in getConstant to avoid duplicating the print when it calls getSplatBuildVector since getSplatBuildVector didn't trigger a print before.
llvm-svn: 320783
Summary:
- lowers @llvm.global_dtors by adding @llvm.global_ctors
functions which register the destructors with `__cxa_atexit`.
- impements @llvm.global_ctors with wasm start functions and linker metadata
See [here](https://github.com/WebAssembly/tool-conventions/issues/25) for more background.
Subscribers: jfb, dschuff, mgorny, jgravelle-google, aheejin, sunfish
Differential Revision: https://reviews.llvm.org/D41211
llvm-svn: 320774
While investigating LLVM PR22316 (http://llvm.org/bugs/show_bug.cgi?id=22316)
I started wondering if it were not always preferable to emit the
initial DBG_VALUEs for stack arguments as FI locations instead of
describing the first register they get copied into. The advantage of
doing this is that the arguments will be available as soon as the
stack is setup. As illustrated by the testcase in the PR, the first
copy of the FI into a register may be sunk by MachineSink.cpp into a
later basic block. By describing the argument on the stack, we nicely
circumvent this problem.
<rdar://problem/19583723>
Differential Revision: https://reviews.llvm.org/D41135
llvm-svn: 320758
Most of the -Wsign-compare warnings are due to the fact that
enums are signed by default in the MS ABI, while the
tautological comparison warnings trigger on x86 builds where
sizeof(size_t) is 4 bytes, so N > numeric_limits<unsigned>::max()
is always false.
Differential Revision: https://reviews.llvm.org/D41256
llvm-svn: 320750
Rather than adding more bits to express every
MMO flag you could want, just directly use the
MMO flags. Also fixes using a bunch of bool arguments to
getMemIntrinsicNode.
On AMDGPU, buffer and image intrinsics should always
have MODereferencable set, but currently there is no
way to do that directly during the initial intrinsic
lowering.
llvm-svn: 320746
Work towards the unification of MIR and debug output by printing
`<mcsymbol sym>` instead of `<MCSym=sym>`.
Only debug syntax is affected.
llvm-svn: 320685
Work towards the unification of MIR and debug output by printing
`liveout(...)` instead of `<regliveout>`.
Only debug syntax is affected.
llvm-svn: 320683
Work towards the unification of MIR and debug output by printing
`@foo` instead of `<ga:@foo>`.
Also print target flags in the MIR format since most of them are used on
global address operands.
Only debug syntax is affected.
llvm-svn: 320682
Recommitting rL319773, which was reverted due to a recursive issue
causing timeouts. This happened because I failed to check whether
the discovered loads could be narrowed further. In the case of a tree
with one or more narrow loads, that could not be further narrowed, as
well as a node that would need masking, an AND could be introduced
which could then be visited and recombined again with the same load.
This could again create the masking load, with would be combined
again... We now check that the load can be narrowed so that this
process stops.
Original commit message:
Search from AND nodes to find whether they can be propagated back to
loads, so that the AND and load can be combined into a narrow load.
We search through OR, XOR and other AND nodes and all bar one of the
leaves are required to be loads or constants. The exception node then
needs to be masked off meaning that the 'and' isn't removed, but the
loads(s) are narrowed still.
Differential Revision: https://reviews.llvm.org/D41177
llvm-svn: 320679
A v32i1 CONCAT_VECTORS of v16i1 uses promotion to v32i8 to legalize the v32i1. This results in a bunch of extract_vector_elts and a build_vector that ultimately gets scalarized.
This patch checks to see if v16i8 is legal and inserts a any_extend to that so that we can concat v16i8 to v32i8 and avoid creating the extracts.
llvm-svn: 320674
If so go ahead and get the promoted input vector to extract from. Previously, we would create a bunch of any_extends of extract_vector_elts with illegal input type that needs to be promoted. The legalization of those extract_vector_elts would then potentially introduce a truncate. So now we have a bunch of any_extends of truncates. By legalizing both parts together we avoid creating these extra nodes.
The test changes seem to be because we were previously combining the build_vector with the any_extend before the any_extend got combined with the truncate.
llvm-svn: 320669
Factor out duplicated code emitting mach-o version-min specifiers.
This should be NFC but happens to fix a bug where the code in
MCMachoStreamer didn't take the version skew between darwin and macos
versions into account.
llvm-svn: 320666
Two issues were found about machine inst scheduler when compiling ProRender
with -g for amdgcn target:
GCNScheduleDAGMILive::schedule tries to update LiveIntervals for DBG_VALUE, which it
should not since DBG_VALUE is not mapped in LiveIntervals.
when DBG_VALUE is the last instruction of MBB, ScheduleDAGInstrs::buildSchedGraph and
ScheduleDAGMILive::scheduleMI does not move RPTracker properly, which causes assertion.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D41132
llvm-svn: 320650
Currently this is an LLVM extension to the COFF spec which is
experimental and intended to speed up linking. For now it is
behind a hidden cl::opt flag, but in the future we can move it
to a "real" cc1 flag and have the driver pass it through whenever
it is appropriate.
The patch to actually make use of this section in lld will come
in a followup.
Differential Revision: https://reviews.llvm.org/D40917
llvm-svn: 320649
Shrink wrapping should ignore DBG_VALUEs referring to frame indices,
since the presence of debug information must not affect code
generation.
Differential Revision: https://reviews.llvm.org/D41187
llvm-svn: 320606
Work towards the unification of MIR and debug output by printing `target-index(target-specific) + 8` instead of `<ti#0+8>` and `target-index(target-specific) + 8` instead of `<ti#0-8>`.
Only debug syntax is affected.
llvm-svn: 320565
Work towards the unification of MIR and debug output by printing
`%const.0 + 8` instead of `<cp#0+8>` and `%const.0 - 8` instead of
`<cp#0-8>`.
Only debug syntax is affected.
Differential Revision: https://reviews.llvm.org/D41116
llvm-svn: 320564
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
Summary:
Add isRenamable() predicate to MachineOperand. This predicate can be
used by machine passes after register allocation to determine whether it
is safe to rename a given register operand. Register operands that
aren't marked as renamable may be required to be assigned their current
register to satisfy constraints that are not captured by the machine
IR (e.g. ABI or ISA constraints).
Reviewers: qcolombet, MatzeB, hfinkel
Subscribers: nemanjai, mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D39400
llvm-svn: 320503
When either instruction in a fused pair has no other dependency, besides on
the other instruction, make sure that other instructions do not get
scheduled between them. Additionally, avoid fusing an instruction more than
once along the same dependency chain.
Differential revision: https://reviews.llvm.org/D36704
llvm-svn: 320420
This is due to PR26161 needing to be resolved before we can fix
big endian bugs like PR35359. The work to split aggregates into smaller LLTs
instead of using one large scalar will take some time, so in the mean time
we'll fall back to SDAG.
Some ARM BE tests xfailed for now as a result.
Differential Revision: https://reviews.llvm.org/D40789
llvm-svn: 320388
At first, I tried to thread the x86 needle and use a target hook (isVectorShiftByScalarCheap())
to disable the transform only for non-splat pow-of-2 constants, but not AVX2, but only some
element types, but...it's difficult.
Here we just avoid the loop with the x86 vector transform that conflicts with the general DAG
combine and preserve all of the existing behavior AFAICT otherwise.
Some tests that will probably fail if someone does try to restrict this in a more targeted way
for x86-only may be found in:
test/CodeGen/X86/combine-mul.ll
test/CodeGen/X86/vector-mul.ll
test/CodeGen/X86/widen_arith-5.ll
This should prevent the infinite looping seen with:
https://bugs.llvm.org/show_bug.cgi?id=35579
Differential Revision: https://reviews.llvm.org/D41040
llvm-svn: 320374
This commit is the first part of https://reviews.llvm.org/D40348.
In order to allow target combines to be performed on newly combined
indexed loads, add them back to the worklist. The remainder of the
above patch will be committed in subsequent revisions and will use
this. Test cases will be included with those follow-up commits.
llvm-svn: 320365
This is a preparatory step for D34515.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
- fixes PR34564
- fixes PR35103
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 320355
Introduces the AddrFI "addressing mode", which is necessary simply because
it's not possible to write a pattern that directly matches a frameindex.
Ensure callee-saved registers are accessed relative to the stackpointer. This
is necessary as callee-saved register spills are performed before the frame
pointer is set.
Move HexagonDAGToDAGISel::isOrEquivalentToAdd to SelectionDAGISel, so we can
make use of it in the RISC-V backend.
Differential Revision: https://reviews.llvm.org/D39848
llvm-svn: 320353
Summary:
This relaxes an assertion inside SelectionDAGBuilder which is overly
restrictive on targets which have no concept of alignment (such as AVR).
In these architectures, all types are aligned to 8-bits.
After this, LLVM will only assert that accesses are aligned on targets
which actually require alignment.
This patch follows from a discussion on llvm-dev a few months ago
http://llvm.1065342.n5.nabble.com/llvm-dev-Unaligned-atomic-load-store-td112815.html
Reviewers: bogner, nemanjai, joerg, efriedma
Reviewed By: efriedma
Subscribers: efriedma, cactus, llvm-commits
Differential Revision: https://reviews.llvm.org/D39946
llvm-svn: 320243
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
MachineSink attempts to place instructions near the basic blocks where
they are needed. Once an instruction has been sunk, its location
relative to other instructions no longer is consistent with the
original source code. In order to ensure correct stepping in the
debugger, the debug location for sunk instructions is either merged
with the insertion point or erased if the target successor block is
empty.
Originally submitted as r318679, revised to fix sanitizer failure and
improve testing.
Patch by Matthew Voss!
Differential Revision: https://reviews.llvm.org/D39933
llvm-svn: 320216
Work towards the unification of MIR and debug output by refactoring the
interfaces.
Add support for operand subreg index as an immediate to debug printing
and use ::print in the MIRPrinter.
Differential Review: https://reviews.llvm.org/D40965
llvm-svn: 320209
I noticed this pattern in D38316 / D38388. We failed to combine a shuffle that is either
repeating a scalar insertion at the same position in a vector or translated to a different
element index.
Like the earlier patch, this could be an instcombine too, but since we opted to make this
a DAG transform earlier, I've made this one a DAG patch too.
We do not need any legality checking because the new insert is identical to the existing
insert except that it may have a different constant insertion operand.
The constant insertion test in test/CodeGen/X86/vector-shuffle-combining.ll was the
motivation for D38756.
Differential Revision: https://reviews.llvm.org/D40209
llvm-svn: 320050
Summary:
Changed use_instructions() to use_nodbg_instructions() when
building an instruction set.
We don't want the presence of debug info to affect the code
we generate.
Reviewers: dblaikie, Eugene.Zelenko, chandlerc, aprantl
Reviewed By: aprantl
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D40882
llvm-svn: 320010
Currently, when creating a named section, the Wasm
frontend forces it to use `SectionKind::Data`, whereas
in fact C++ does generate code sections with custom
names.
Patch by Nicholas Wilson
Differential Revision: https://reviews.llvm.org/D40906
llvm-svn: 320002
Summary:
When calculating the RootLatency, we add up all the latencies of the
deleted instructions. But for NewRootLatency we only add the latency of
the new root instructions, ignoring the latencies of the other
instructions inserted. This leads the combiner to underestimate the cost
of patterns which add multiple instructions. This patch fixes that by
summing up the latencies of all new instructions. For NewRootNode, the
more complex getLatency function is used.
Note that we may be slightly more precise than just summing up
all latencies. For example, consider a pattern like
r1 = INS1 ..
r2 = INS2 ..
r3 = INS3 r1, r2
I think in some other places, the total latency of the pattern would be
estimated as lat(INS3) + max(lat(INS1), lat(INS2)). If you consider
that worth changing, I think it would be best to do in a follow-up
patch.
Reviewers: Gerolf, sebpop, spop, fhahn
Reviewed By: fhahn
Subscribers: evandro, llvm-commits
Differential Revision: https://reviews.llvm.org/D40307
llvm-svn: 319951
If the mask needs to be promoted that should occur by the legalizer detecting the mask operand needs to be promoted not as a side effect of another action.
llvm-svn: 319852
The mask will be promoted if necessary when operands are promoted. It's possible the mask type is legal, but the setcc result type is a different. We shouldn't promote to the setcc result type unless the mask needs to be promoted.
llvm-svn: 319850
The patch originally broke Chromium (crbug.com/791714) due to its failing to
specify that the new pseudo instructions clobber EFLAGS. This commit fixes
that.
> Summary: This strengthens the guard and matches MSVC.
>
> Reviewers: hans, etienneb
>
> Subscribers: hiraditya, JDevlieghere, vlad.tsyrklevich, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D40622
llvm-svn: 319824
There's no such thing as a setcc with vector operands and scalar result. And if we're trying to widen the result we would have to already be looking at a vector result type.
So this patch renames the VSETCC function as the SETCC function and delete the original SETCC function.
llvm-svn: 319799
Search from AND nodes to find whether they can be propagated back to
loads, so that the AND and load can be combined into a narrow load.
We search through OR, XOR and other AND nodes and all bar one of the
leaves are required to be loads or constants. The exception node then
needs to be masked off meaning that the 'and' isn't removed, but the
loads(s) are narrowed still.
Differential Revision: https://reviews.llvm.org/D39604
llvm-svn: 319773
Summary:
Found out, at code inspection, that there was a fault in
DAGCombiner::CombineConsecutiveLoads for big-endian targets.
A BUILD_PAIR is always having the least significant bits of
the composite value in element 0. So when we are doing the checks
for consecutive loads, for big endian targets, we should check
if the load to elt 1 is at the lower address and the load
to elt 0 is at the higher address.
Normally this bug only resulted in missed oppurtunities for
doing the load combine. I guess that in some rare situation it
could lead to faulty combines, but I've not seen that happen.
Note that this patch actually will trigger load combine for
some big endian regression tests.
One example is test/CodeGen/PowerPC/anon_aggr.ll where we now get
t76: i64,ch = load<LD8[FixedStack-9]
instead of
t37: i32,ch = load<LD4[FixedStack-10]>
t35: i32,ch = load<LD4[FixedStack-9]>
t41: i64 = build_pair t37, t35
before legalization. Then the legalization will split the LD8
into two loads, so the end result is the same. That should
verify that the transfomation is correct now.
Reviewers: niravd, hfinkel
Reviewed By: niravd
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D40444
llvm-svn: 319771
Pull the checks upon the load out from ReduceLoadWidth into their own
function.
Differential Revision: https://reviews.llvm.org/D40833
llvm-svn: 319766
MachineRegisterInfo used to allow just one regalloc hint per virtual
register. This patch extends this to a vector of regalloc hints, which is
filled in by common code with sorted copy hints. Such hints will make for
more ID copies that can be removed.
NB! This improvement is currently (and hopefully temporarily) *disabled* by
default, except for SystemZ. The only reason for this is the big impact this
has on tests, which has unfortunately proven unmanageable. It was a long
while since all the tests were updated and just waiting for review (which
didn't happen), but now targets have to enable this themselves
instead. Several targets could get a head-start by downloading the tests
updates from the Phabricator review. Thanks to those who helped, and sorry
you now have to do this step yourselves.
This should be an improvement generally for any target!
The target may still create its own hint, in which case this has highest
priority and is stored first in the vector. If it has target-type, it will
not be recomputed, as per the previous behaviour.
The temporary hook enableMultipleCopyHints() will be removed as soon as all
targets return true.
Review: Quentin Colombet, Ulrich Weigand.
https://reviews.llvm.org/D38128
llvm-svn: 319754
The CONCAT_VECTORS operand get its type from getSetCCResultType, but if the mask type and the setcc have different scalar sizes this creates an illegal CONCAT_VECTORS operation. The concat type should be 2x the mask type, and then an extend should be added if needed.
llvm-svn: 319744
Consistently use the same parameter names as the names of the affected
fields. This avoids some unintuitive abbreviations like `isSS`.
llvm-svn: 319722
While we cannot skip the whole TwoAddressInstructionPass even for -O0
there are some parts of the pass that are currently skipped at -O0 but
not for optnone. Changing this as there is no reason to have those two
hit different code paths here.
llvm-svn: 319721
MatchRotate assumes the types of the types of LHS and RHS are equal,
which is always the case then they come from an OR node, but here
we're getting them from two different TRUNC nodes, so we have to check
the types.
llvm-svn: 319695
If the truncation has been pushed past the or-node, look through it and
truncate afterwards.
Differential revision: https://reviews.llvm.org/D40792
llvm-svn: 319692
This patch splits atomics out of the generic G_LOAD/G_STORE and into their own
G_ATOMIC_LOAD/G_ATOMIC_STORE. This is a pragmatic decision rather than a
necessary one. Atomic load/store has little in implementation in common with
non-atomic load/store. They tend to be handled very differently throughout the
backend. It also has the nice side-effect of slightly improving the common-case
performance at ISel since there's no longer a need for an atomicity check in the
matcher table.
All targets have been updated to remove the atomic load/store check from the
G_LOAD/G_STORE path. AArch64 has also been updated to mark
G_ATOMIC_LOAD/G_ATOMIC_STORE legal.
There is one issue with this patch though which also affects the extending loads
and truncating stores. The rules only match when an appropriate G_ANYEXT is
present in the MIR. For example,
(G_ATOMIC_STORE (G_TRUNC:s16 (G_ANYEXT:s32 (G_ATOMIC_LOAD:s16 X))))
will match but:
(G_ATOMIC_STORE (G_ATOMIC_LOAD:s16 X))
will not. This shouldn't be a problem at the moment, but as we get better at
eliminating extends/truncates we'll likely start failing to match in some
cases. The current plan is to fix this in a patch that changes the
representation of extending-load/truncating-store to allow the MMO to describe
a different type to the operation.
llvm-svn: 319691
Summary:
Move splitIndirectCriticalEdges() from CodeGenPrepare to BasicBlockUtils.h so
that it can be called from other places.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40750
llvm-svn: 319689
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
An instruction returned by TII->convertToThreeAddress() may contain a %noreg
(undef) operand, which is not expected by tryInstructionTransform(). So if
this MI is sunk to a lower point in MBB, it must be skipped when later
encountered.
A new set SunkInstrs is used for this purpose.
Note: there is no test supplied here, as this was triggered on SystemZ while
working on a review of instruction flags. A test case for this bugfix will be
included in the upcoming SystemZ commit.
Review: Quentin Colombet
https://reviews.llvm.org/D40711
llvm-svn: 319646
Both LoadedVT and NarrowLoad are passed as references and neither
of them are used by any of its callers.
Differential Revision: https://reviews.llvm.org/D40713
llvm-svn: 319645
If we have a non-splat constant shift amount, the minimum shift amount can be used to infer the number of zero upper bits of the result. There's probably a lot more that we can do here, but this
fixes a case where I wanted to infer the sign bit as zero when all the shift amounts are non-zero.
llvm-svn: 319639
SelectionDAGISel::LowerArguments assumes sret addr space is 0, which is
not true for amdgcn---amdgiz target.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40255
llvm-svn: 319630
Two issues found when doing codegen for splitting vector with non-zero alloca addr space:
DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT/SplitVecOp_EXTRACT_VECTOR_ELT uses dummy pointer info for creating
SDStore. Since one pointer operand contains multiply and add, InferPointerInfo is unable to
infer the correct pointer info, which ends up with a dummy pointer info for the target to lower
store and results in isel failure. The fix is to introduce MachinePointerInfo::getUnknownStack to
represent MachinePointerInfo which is known in alloca address space but without other information.
TargetLowering::getVectorElementPointer uses value type of pointer in addr space 0 for
multiplication of index and then add it to the pointer. However the pointer may be in an addr
space which has different size than addr space 0. The fix is to use the pointer value type for
index multiplication.
Differential Revision: https://reviews.llvm.org/D39758
llvm-svn: 319622
Currently, the outliner considers candidates that intersect with themselves in
the candidate pruning step. That is, candidates of the form "AA" in ranges like
"AAAAAA". In that range, it looks like there are 5 instances of "AA" that could
possibly be outlined, and that's considered in the benefit calculation.
However, only at most 3 instances of "AA" could ever be outlined in "AAAAAA".
Thus, it's possible to pass through "AA" to the candidate selection step even
though it's *never* the case that "AA" could be outlined. This makes it so that
when we find candidates, we consider only non-overlapping occurrences of that
candidate.
llvm-svn: 319588
These are blocks that haven't not been executed during training. For large
projects this could make a significant difference. For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.
Differential Revision: https://reviews.llvm.org/D40678
Re-commit after fixing the failing testcase in rL319576, rL319577 and
rL319578.
llvm-svn: 319581
These are blocks that haven't not been executed during training. For large
projects this could make a significant difference. For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.
Differential Revision: https://reviews.llvm.org/D40678
llvm-svn: 319556
Summary:
1/ Operand folding during complex pattern matching for LEAs has been extended, such that it promotes Scale to
accommodate similar operand appearing in the DAG e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will now look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs so that if there is an opportunity
then complex LEAs (having 3 operands) could be factored out e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops, thus avoiding creation of any complex LEAs within a loop.
4/ Simplify LEA converts (lea (BASE,1,INDEX,0) --> add (BASE, INDEX) which offers better through put.
PR32755 will be taken care of by this pathc.
Previous patch revisions : r313343 , r314886
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy, jbhateja
Reviewed By: lsaba, RKSimon, jbhateja
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 319543
Summary: LegalizerInfo assumes all G_MERGE_VALUES and G_UNMERGE_VALUES instructions are legal, so it is not possible to legalize vector operations on illegal vector types. This patch fixes the problem by removing the related check and adding default actions for G_MERGE_VALUES and G_UNMERGE_VALUES.
Reviewers: qcolombet, ab, dsanders, aditya_nandakumar, t.p.northover, kristof.beyls
Reviewed By: dsanders
Subscribers: rovka, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39823
llvm-svn: 319524
Type promotion makes no guarantee about the contents of the promoted bits. Since the gather/scatter instruction will use the bits to calculate addresses, we need to ensure they aren't garbage.
llvm-svn: 319520
These command line options are not intended for public use, and often
don't even make sense in the context of a particular tool anyway. About
90% of them are already hidden, but when people add new options they
forget to hide them, so if you were to make a brand new tool today, link
against one of LLVM's libraries, and run tool -help you would get a
bunch of junk that doesn't make sense for the tool you're writing.
This patch hides these options. The real solution is to not have
libraries defining command line options, but that's a much larger effort
and not something I'm prepared to take on.
Differential Revision: https://reviews.llvm.org/D40674
llvm-svn: 319505
G_ATOMICRMW_* is generally legal on AArch64. The exception is G_ATOMICRMW_NAND.
G_ATOMIC_CMPXCHG_WITH_SUCCESS needs to be lowered to G_ATOMIC_CMPXCHG with an
external comparison.
Note that IRTranslator doesn't generate these instructions yet.
llvm-svn: 319466
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
Re applying after fixing issues in the diff, sorry for any painful conflicts/merges!
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319430
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
Summary:
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
I wasn't sure who to put as reviewers, so please add/remove people as appropriate.
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319423
visitAND attempts to narrow the width of extending loads that are
then masked off. ReduceLoadWidth already exists for a similar purpose
and handles shifts, so I've moved the code to handle AND nodes there.
Differential Revision: https://reviews.llvm.org/D39595
llvm-svn: 319421
If we put in an assertsext/zext here, we're able to generate better truncate code using pack on pre-avx512 targets.
Similar is already done during type legalization. This is the equivalent for op legalization
Differential Revision: https://reviews.llvm.org/D40591
llvm-svn: 319368
If common type is different we should bail out due to we will not be
able to create a select or Phi of these values.
Basically it is done in ExtAddrMode::compare however it does not work
if we handle the null first and then two values of different types.
so add a check in initializeMap as well. The check in ExtAddrMode::compare
is used as earlier bail out.
Reviewers: reames, john.brawn
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40479
llvm-svn: 319292
The object can't straddle the address space
wrap around, so I think it's OK to assume any
offsets added to the base object pointer can't
overflow. Similar logic already appears to be
applied in SelectionDAGBuilder when lowering
aggregate returns.
llvm-svn: 319272
Previously we had an isel pattern to add the truncate. Instead use Promote to add the truncate to the DAG before isel.
The Promote legalization code had to be updated to prevent an infinite loop if promotion took multiple steps because it wasn't remembering the previously tried value.
llvm-svn: 319259
Summary:
Recommitting this with the correct sorting predicate. The Low field of Clusters is a ConstantInt and
cannot be directly compared. So we needed to invoke slt (signed less than) to compare correctly.
This fixes failures in the following tests uncovered by D39245:
LLVM :: CodeGen/ARM/ifcvt3.ll
LLVM :: CodeGen/ARM/switch-minsize.ll
LLVM :: CodeGen/X86/switch.ll
LLVM :: CodeGen/X86/switch-bt.ll
LLVM :: CodeGen/X86/switch-density.ll
Reviewers: hans, fhahn
Reviewed By: hans
Subscribers: aemerson, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40541
llvm-svn: 319210
Summary:
They're not always mutually exclusive. read-modify-write atomics are both
at the same time. One example of this is the SWP instructions on AArch64.
Another example is GlobalISel's G_ATOMICRMW_* generic instructions which
will be added in a later patch.
Reviewers: arphaman, aemerson
Reviewed By: aemerson
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D40157
llvm-svn: 319202
The motivation behind this patch is that future directions require us to
be able to compute the hash value of records independently of actually
using them for de-duplication.
The current structure of TypeSerializer / TypeTableBuilder being a
single entry point that takes an unserialized type record, and then
hashes and de-duplicates it is not flexible enough to allow this.
At the same time, the existing TypeSerializer is already extremely
complex for this very reason -- it tries to be too many things. In
addition to serializing, hashing, and de-duplicating, ti also supports
splitting up field list records and adding continuations. All of this
functionality crammed into this one class makes it very complicated to
work with and hard to maintain.
To solve all of these problems, I've re-written everything from scratch
and split the functionality into separate pieces that can easily be
reused. The end result is that one class TypeSerializer is turned into 3
new classes SimpleTypeSerializer, ContinuationRecordBuilder, and
TypeTableBuilder, each of which in isolation is simple and
straightforward.
A quick summary of these new classes and their responsibilities are:
- SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of
bytes. Does not do any hashing. Every time you call it, it will
re-serialize and return bytes again. The same instance can be re-used
over and over to avoid re-allocations, and in exchange for this
optimization the bytes returned by the serializer only live until the
caller attempts to serialize a new record.
- ContinuationRecordBuilder : Turns a FieldList-like record into a series
of fragments. Does not do any hashing. Like SimpleTypeSerializer,
returns references to privately owned bytes, so the storage is
invalidated as soon as the caller tries to re-use the instance. Works
equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a
long-standing theoretical limitation of the previous implementation.
- TypeTableBuilder : Accepts sequences of bytes that the user has already
serialized, and inserts them by de-duplicating with a hash table. For
the sake of convenience and efficiency, this class internally stores a
SimpleTypeSerializer so that it can accept unserialized records. The
same is not true of ContinuationRecordBuilder. The user is required to
create their own instance of ContinuationRecordBuilder.
Differential Revision: https://reviews.llvm.org/D40518
llvm-svn: 319198
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
This is needed for cases when the memory access is not as big as the width of
the data type. For instance, storing i1 (1 bit) would be done in a byte (8
bits).
Using 'BitSize >> 3' (or '/ 8') would e.g. give the memory access of an i1 a
size of 0, which for instance makes alias analysis return NoAlias even when
it shouldn't.
There are no tests as this was done as a follow-up to the bugfix for the case
where this was discovered (r318824). This handles more similar cases.
Review: Björn Petterson
https://reviews.llvm.org/D40339
llvm-svn: 319173
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
The priorities in the section name suffixes are zero padded,
allowing the linker to just do a lexical sort.
Add zero padding for .ctors sections in ELF as well.
Differential Revision: https://reviews.llvm.org/D40407
llvm-svn: 319150
Unoptimized IR can have linear sequences of stores to an array, where the
initial GEP for the first store is formed from the pointer to the array, and the
GEP for each store after the first is formed from the previous GEP with some
offset in an inductive fashion.
The (large) resulting DAG when analyzed by DAGCombine undergoes an excessive
number of combines as each store node is examined every time its' offset node
is combined with any child of the offset. One of the transformations is
findBetterNeighborChains which assists MergeConsecutiveStores. The former
relies on repeated chain walking to do its' work, however MergeConsecutiveStores
is disabled at O0 which makes the transformation redundant.
Any optimization level other than O0 would invoke InstCombine which would
resolve the chain of GEPs into flat base + offset GEP for each store which
does not exhibit the repeated examination of each store to the array.
Disabling this optimization fixes an excessive compile time issue (30~ minutes
for the test case provided) at O0.
Reviewers: niravd, craig.topper, t.p.northover
Differential Revision: https://reviews.llvm.org/D40193
llvm-svn: 319142
This fixes cases where we wouldn't perform various register operand
checks just because we didn't happen to have a definition in the
MCInstrDesc. This changes the code to only skip the tests that actually
depend on the MCInstrDesc definition.
This makes the machine verifier spot the problem from
https://llvm.org/PR33071 after the pass that actually caused it.
llvm-svn: 319141
Additional checks for phi operands:
- first operand should be a virtual register def. It should not be
tied, implicit, internalread, earlyclobber or a read.
- The other operands should be register/mbb operands next to each other
- The register operands should not be implicit, internalread,
earlyclobber, debug or tied.
- We can perform most of the PHI checks even for unreachable blocks.
llvm-svn: 319140
With AVX512 vXi1 types are legal so we shouldn't be extending them.
This change is similar to existing code in the zext(setcc) combine.
llvm-svn: 319120
The current way that trivial addressing modes are detected incorrectly thinks
that null pointers are non-trivial, leading to an infinite loop where we keep
duplicating the same select. Fix this by aware of null when deciding if an
addressing mode is trivial.
Differential Revision: https://reviews.llvm.org/D40447
llvm-svn: 319019