This is a long-awaited follow-up suggested in D33578. Since then, we've picked up even more
opportunities for vector narrowing from changes like D53784, so there are a lot of test diffs.
Apart from 2-3 strange cases, these are all wins.
I've structured this to be no-functional-change-intended for any target except for x86
because I couldn't tell if AArch64, ARM, and AMDGPU would improve or not. All of those
targets have existing regression tests (4, 4, 10 files respectively) that would be
affected. Also, Hexagon overrides the shouldReduceLoadWidth() hook, but doesn't show
any regression test diffs. The trade-off is deciding if an extra vector load is better
than a single wide load + extract_subvector.
For x86, this is almost always better (on paper at least) because we often can fold
loads into subsequent ops and not increase the official instruction count. There's also
some unknown -- but potentially large -- benefit from using narrower vector ops if wide
ops are implemented with multiple uops and/or frequency throttling is avoided.
Differential Revision: https://reviews.llvm.org/D54073
llvm-svn: 346595
There are two AGU units, and per 1cy, there can be either two loads,
or a load and a store; but not two stores, or two loads and a store.
Additionally, loads shouldn't affect the store scheduler and vice versa.
(but *should* affect the PdEX scheduler.)
Required rL346545.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39465
llvm-svn: 346587
The sdivrem will emit its own MOVSX to move %ah to the low byte of a register. By using a MOVSX for an any_extend this allows a post-isel peephole to merge them.
llvm-svn: 346581
After the division %ah is being sign extended to move it to lower byte of a register while avoiding a partial register read. We then zero extend the low byte to the full 32 bit register. But we don't use any of the zero extended bits. In the DAG the zero extend was really an any_extend so the sign extend should have been enough.
llvm-svn: 346580
This gives shuffle lowering the freedom to use zero_extend_vector_inreg for the unpckl shuffle. Shuffle combining usually makes this swap later, but not when AVX512 is enabled it seems.
While there also use DAG.getConstant to create a 0 vector instead of using the helper the forces a specific BUILD_VECTOR. I don't think that helper is usually needed. We're basically free to create a constant build_vector anytime and it will be legalized on its own.
llvm-svn: 346574
This patch adds support for funclets in frame lowering and ISel
lowering. Together with D50288 and D50166, it enables C++ exception
handling.
Patch by Sanjin Sijaric, with some fixes by me.
Differential Revision: https://reviews.llvm.org/D51524
llvm-svn: 346568
In r346432 ("[DAGCombine] Improve alias analysis for chain of independent stores"),
the order of ldi/sts blocks changed.
The new IR is equivalent to the old IR.
This patch updates the test to fix the test suite.
llvm-svn: 346565
LDRcp should be deleted when the dest register is dead in register
coalescing. Without MemOp, dead LDRcp will cause dead constant pool
value which references to non-existing label.
Patch by Yin Ma.
Differential Revision: https://reviews.llvm.org/D54173
llvm-svn: 346563
Summary:
These tests fail on 32-bit builds because NaN payload bits in floating point
immediates are not necessarily preserved through compilation. This is because
the MC layer uses native doubles to store these values. The tests will be
reenabled once this problem has been fixed or deleted if we decide we don't care
about lowering payload bits.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54353
llvm-svn: 346558
With avx512f but not avx512bw we need to extend to v16i32 then truncate that to to v16i8. Previously we emitted both nodes during lowering, but I'm trying to switch to using target independent nodes and with that switched the extend+truncate wou
This patch changes the implementation to what will be necessary with that patch which helps minimize test diffs.
llvm-svn: 346552
A few fp128 tests were omitted from test/CodeGen/SystemZ/fp-round-01.ll
since in early days, LLVM couldn't handle implicitly generated library
calls to functions with long double arguments on SystemZ.
This deficiency was actually long since fixed, but those tests are
still missing. This patch adds the missing tests. NFC.
llvm-svn: 346541
This makes X86ISD::VSEXT more similar to ISD::SIGN_EXTEND and ISD::ZERO_EXTEND.
I'm hoping to replace X86ISD::VSEXT/VZEXT with target independent nodes. Making the target specific nodes similar to the target independent nodes helps minimize test diffs in that patch.
llvm-svn: 346539
Eliminate the stack frame in functions with the noreturn nounwind
attributes, and when the noreturn-stack-elim target feature is
enabled. This reduces the code and stack space needed for noreturn
functions.
Differential Revision: https://reviews.llvm.org/D54210
llvm-svn: 346532
It's possible for vector op legalization to generate a shuffle. If that happens we should give a chance for DAG combine to combine that with a build_vector input.
I also fixed a bug in combineShuffleOfScalars that was considering the number of uses on a undef input to a shuffle. We don't care how many times undef is used.
Differential Revision: https://reviews.llvm.org/D54283
llvm-svn: 346530
Both -fPIC and -G0 disable placement of globals in small data section,
but if a global has an explicit section assigmnent placing it in small
data, it should go there anyway.
llvm-svn: 346523
Currently in llvm, CalleeSavedInfo can only assign a callee saved register to
stack frame index to be spilled in the prologue. We would like to enable
spilling gprs to vector registers. This patch adds the capability to spill to
other registers aside from just the stack. It also adds the changes for power9
to spill gprs to volatile vector registers when they are available.
This happens only for leaf functions when using the option
-ppc-enable-pe-vector-spills.
Differential Revision: https://reviews.llvm.org/D39386
llvm-svn: 346512
A minor improvement of buildVector() that skips creating an
INSERT_VECTOR_ELT for a Value which has already been used for the
REPLICATE.
Review: Ulrich Weigand
https://reviews.llvm.org/D54315
llvm-svn: 346504
Now that we have mixed type sizes, i1 values need to be explicitly
handled as we want to avoid promoting these values.
Differential Revision: https://reviews.llvm.org/D54308
llvm-svn: 346499
I noticed that we weren't generating broadcasts as much I thought we would with
D54271, and this is part of the problem.
Widening the shuffle elements means adding bitcasts and hiding the relationship
between a splatted scalar and the vector. If we can form a broadcast, do that
before going through the rest of the shuffle lowering because broadcasts should
be cheap and can often be load-folded.
Differential Revision: https://reviews.llvm.org/D54280
llvm-svn: 346498
The DAGCombiner tries to SimplifySelectCC as follows:
select_cc(x, y, 16, 0, cc) -> shl(zext(set_cc(x, y, cc)), 4)
It can't cope with the situation of reordered operands:
select_cc(x, y, 0, 16, cc)
In that case we just need to swap the operands and invert the Condition Code:
select_cc(x, y, 16, 0, ~cc)
Differential Revision: https://reviews.llvm.org/D53236
llvm-svn: 346484
In SimplifyCFG when given a conditional branch that goes to BB1 and BB2, the hoisted common terminator instruction in the two blocks, caused debug line records associated with subsequent select instructions to become ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53390
llvm-svn: 346481
Previously, during the search, all values had to have the same
'TypeSize', which is equal to number of bits of the integer type of
the icmp operand. All values in the tree had to match this size;
meaning that, if we searched from i16, we wouldn't accept i8s. A
change in type size requires zext and truncs to perform the casts so,
to allow mixed narrow types, the handling of these instructions is
now slightly different:
- we allow casts if their result or operand is <= TypeSize.
- zexts are sinks if their result > TypeSize.
- truncs are still sinks if their operand == TypeSize.
- truncs are still sources if their result == TypeSize.
The transformation bails on finding an icmp that operates on data
smaller than the current TypeSize.
Differential Revision: https://reviews.llvm.org/D54108
llvm-svn: 346480
Summary:
The pass incorrectly assumed if there's a longjmp declaration in the
module, there is also a setjmp function declaration. Fixed it, and now
the pass only converts longjmp and does not do any other transformation
when there's no setjmp declaration in the module.
Fixes PR39562.
Reviewers: jgravelle-google, sbc100
Subscribers: dschuff, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54273
llvm-svn: 346445
As discussed in D54073, we have a potential regression from more aggressive vector narrowing here, so let's try to avoid that by changing build-vector lowering slightly.
Insert-vector-element lowering always does this since there's no "pinsr" for ymm/zmm:
// If the vector is wider than 128 bits, extract the 128-bit subvector, insert
// into that, and then insert the subvector back into the result.
...but we can sometimes do better for insert-into-constant-vector by using shuffle lowering.
Differential Revision: https://reviews.llvm.org/D54271
llvm-svn: 346433
FindBetterNeighborChains simulateanously improves the chain
dependencies of a chain of related stores avoiding the generation of
extra token factors. For chains longer than the GatherAllAliasDepths,
stores further down in the chain will necessarily fail, a potentially
significant waste and preventing otherwise trivial parallelization.
This patch directly parallelize the chains of stores before improving
each store. This generally improves DAG-level parallelism.
Reviewers: courbet, spatel, RKSimon, bogner, efriedma, craig.topper, rnk
Subscribers: sdardis, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53552
llvm-svn: 346432
It was discovered in randomized testing that the SystemZ implementation of
shouldCoalesce() could be caused to crash when subreg liveness was
enabled. This was because an undef use of the virtual register was copied
outside current MBB at the point of shouldCoalesce() being called. For more
details, see https://bugs.llvm.org/show_bug.cgi?id=39276.
This patch changes the check for MBB locality from livein/liveout checks to
do checks for all instructions of both intervals being inside MBB. This
avoids the cases with dead defs / undef uses outside MBB, which are not
affecting liveness in/out of MBB.
The original test case included as a reduced .mir test case.
Review: Ulrich Weigand
https://reviews.llvm.org/D54197
llvm-svn: 346406
Generalize code in Thumb2InstrInfo::storeRegToStackSlot() and
loadRegToStackSlot() to allow the GPR class or any of its sub-classes
(including hGPR) to be stored/loaded by ARM::t2STRi12/ARM::t2LDRi12.
Differential Revision: https://reviews.llvm.org/D51927
llvm-svn: 346401
Promote alloca can vectorize a small array by bitcasting it to a
vector type. Extend vectorization for the case when alloca is
already a vector type. We still want to replace GEPs with an
insert/extract element instructions in this case.
Differential Revision: https://reviews.llvm.org/D54219
llvm-svn: 346376
Summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Reviewers: asl
Reviewed By: asl
Subscribers: pftbest, krisb, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D53661
llvm-svn: 346374
Like the comment says, this isn't the most efficient fix in terms of
codesize, but it works.
Differential Revision: https://reviews.llvm.org/D54129
llvm-svn: 346358
The lowering was missing live-ins in certain cases, like a sequence of
multiple tMOVCCr_pseudo instructions. This would lead to a verifier
failure, and on pre-v6 Thumb CPSR would be incorrectly clobbered.
For reasons I don't completely understand, it's hard to get a sequence
of multiple tMOVCCr_pseudo instructions; the issue only seems to show up
with 64-bit comparisons where the result is zero-extended. I added some
extra testcases in case that changes in the future. Probably some
optimization opportunities here if anyone is interested. (@test_slt_not
is the case that was getting miscompiled.)
The code to check the liveness of CPSR was stolen from
X86ISelLowering.cpp; maybe it could be refactored into common helper,
but I have no idea where to put it.
Differential Revision: https://reviews.llvm.org/D54192
llvm-svn: 346355
This allows testing AMDGPU alias analysis like any
other alias analysis pass. This fixes the existing
test pointlessly running opt -O3 when it really
just wants to run the one analysis.
Before there was no way to test this using -aa-eval
with opt, since the default constructed pass
is run. The wrapper subclass allows the
default constructor to pass the necessary callback.
llvm-svn: 346353
Summary:
The conditional branch created to support -fsplit-stack for X86 is
left unbiased/unhinted, resulting in less than ideal block placement:
the __morestack call block is kept on the main hot path. Bias the
branch to insure that the stack allocation block is treated as a
"cold" block during machine basic block placement.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54123
llvm-svn: 346336
It seems that the PPC backend croaks when lowering a call to a
function with an argument of type [2 x i32].
Just modify the type slightly to avoid this -- I wasn't actually
intending to stress test the backend...
llvm/lib/Target/PowerPC/PPCISelLowering.cpp:6172: llvm::SDValue llvm::PPCTargetLowering::LowerCall_64SVR4(...): Assertion `(!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && "mismatch in size of parameter area"' failed.
llvm-svn: 346334
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
Set operands order for G_MERGE_VALUES and G_UNMERGE_VALUES so
that least significant bits always go first, regardless of endianness.
Differential Revision: https://reviews.llvm.org/D54098
llvm-svn: 346305
Set `LiveReg::PhysReg` to zero when freeing a register instead of
removing it from the entry from `LiveRegMap`. This way no iterators get
invalidated and we can avoid passing around and updating iterators all
over the place.
This does not change any allocator decisions. It is not completely NFC
because the arbitrary iteration order through `LiveRegMap` in
`spillAll()` changes so we may get a different order in those spill
sequences (the amount of spills does not change).
This is in preparation of https://reviews.llvm.org/D52010.
llvm-svn: 346298
Add this option for debugging and providing workaround.
By default it is off so no behavior change in backend.
Differential Revision: https://reviews.llvm.org/D54158
llvm-svn: 346267
It was causing a crash because we were trying to get the definition
of a target register. Fixed the issue by adding a check and added
a test case for that.
llvm-svn: 346251
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
This reverts rL345880. It caused some test failures on the
webassembly waterfall. e.g. binaryen2.test_mainenv fails due
the fact that `envp` ends up being undef rather than 0.
Differential Revision: https://reviews.llvm.org/D54117
llvm-svn: 346187
I'm preparing a patch to avoid creating critical edges in cmov expansion. Updating these tests to make the changes by the next patch easier to see.
llvm-svn: 346161
On Power9, we don't have patterns to select the following intrinsics:
llvm.ppc.vsx.stxvw4x.be
llvm.ppc.vsx.stxvd2x.be
This patch adds support for these.
Differential Revision: https://reviews.llvm.org/D53581
llvm-svn: 346148
The constrained intrinsic tests have grown in number. Split off
the FMA tests into their own file to reduce double coverage.
Differential Revision: https://reviews.llvm.org/D53932
llvm-svn: 346137
Expand on LONG_BRANCH_LUi and LONG_BRANCH_(D)ADDiu pseudo
instructions by creating variants which support
less operands/accept GPR64Opnds as their operand in order
to appease the machine verifier pass.
Differential Revision: https://reviews.llvm.org/D53977
llvm-svn: 346133
The new atomic optimizer I previously added in D51969 did not work
correctly when a pixel shader was using derivatives, and had helper
lanes active.
To fix this we add an llvm.amdgcn.ps.live call that guards a branch
around the entire atomic operation - ensuring that all helper lanes are
inactive within the wavefront when we compute our atomic results.
I've added a test case that can cause derivatives, and exposes the
problem.
Differential Revision: https://reviews.llvm.org/D53930
llvm-svn: 346128
Turn the assert in PrepareConstants into a conditon so that we can
handle mul instructions with negative immediates.
Differential Revision: https://reviews.llvm.org/D54094
llvm-svn: 346126
r345840 slightly changed the way promotion happens which could
result in zext and truncs having the same source and destination
types. This fixes that issue.
We can now also remove the zext and trunc in the following case:
(zext (trunc (promoted op)), i32)
This means that we can no longer treat a value, that is only used by
a sink, to be safe to promote.
I've also added in some extra asserts and replaced a cast for a
dyn_cast.
Differential Revision: https://reviews.llvm.org/D54032
llvm-svn: 346125
This patch fixes a bug in the AVR FRMIDX expansion logic.
The expansion would leave a leftover operand from the original FRMIDX,
but now attached to a MOVWRdRr instruction. The MOVWRdRr instruction
did not expect this operand and so LLVM rejected the machine
instruction.
This would trigger an assertion:
Assertion failed: ((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
OpNo < MCID->getNumOperands() || isMetaDataOp) &&
"Trying to add an operand to a machine instr that is already done!"),
function addOperand, file llvm/lib/CodeGen/MachineInstr.cpp
Tim fixed this so that now the FRMIDX is expanded correctly into
a well-formed MOVWRdRr.
Patch by Tim Neumann
llvm-svn: 346117
v2i8/v2i16/v2i32 are promoted to v2i64. pmuludq takes a v2i64 input and produces a v2i64 output. Since we don't about the upper bits of the type legalized multiply we can use the pmuludq to produce the multiply result for the bits we do care about.
llvm-svn: 346115
This is an AVR-specific workaround for a limitation of the register
allocator that only exposes itself on targets with high register
contention like AVR, which only has three pointer registers.
The three pointer registers are X, Y, and Z.
In most nontrivial functions, Y is reserved for the frame pointer,
as per the calling convention. This leaves X and Z. Some instructions,
such as LPM ("load program memory"), are only defined for the Z
register. Sometimes this just leaves X.
When the backend generates a LDDWRdPtrQ instruction with Z as the
destination pointer, it usually trips up the register allocator
with this error message:
LLVM ERROR: ran out of registers during register allocation
This patch is a hacky workaround. We ban the LDDWRdPtrQ instruction
from ever using the Z register as an operand. This gives the
register allocator a bit more space to allocate, fixing the
regalloc exhaustion error.
Here is a description from the patch author Peter Nimmervoll
As far as I understand the problem occurs when LDDWRdPtrQ uses
the ptrdispregs register class as target register. This should work, but
the allocator can't deal with this for some reason. So from my testing,
it seams like (and I might be totally wrong on this) the allocator reserves
the Z register for the ICALL instruction and then the register class
ptrdispregs only has 1 register left and we can't use Y for source and
destination. Removing the Z register from DREGS fixes the problem but
removing Y register does not.
More information about the bug can be found on the avr-rust issue
tracker at https://github.com/avr-rust/rust/issues/37.
A bug has raised to track the removal of this workaround and a proper
fix; PR39553 at https://bugs.llvm.org/show_bug.cgi?id=39553.
Patch by Peter Nimmervoll
llvm-svn: 346114
Summary: This also enables some constant folding from KnownBits propagation. This helps on some cases vXi64 case in 32-bit mode where constant vectors appear as vXi32 and a bitcast. This can prevent getNode from constant folding sra/shl/srl.
Reviewers: RKSimon, spatel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54069
llvm-svn: 346102
Use MachineFrameInfo's OffsetAdjustment field to pass this information
from the target to CodeViewDebug.cpp. The X86 backend doesn't use it for
any other purpose.
This fixes PR38857 in the case where there is a non-aligned quantity of
CSRs and a non-aligned quantity of locals.
llvm-svn: 346062
The majority of the changes are because the rest of shuffle lowering/combining prefers to replace the undef input with the other operand. Using UNPCKL directly seemed to avoid this and just grabbed a randomish register for the undef which can create false dependencies.
llvm-svn: 346050
We already have custom lowering for the AVX case in LegalizeVectorOps. So its better to keep the regular extend op around as long as possible.
I had to qualify one place in DAG combine that created illegal vector extending load operations. This change by itself had no effect on any tests which is why its included here.
I've made a few cleanups to the custom lowering. The sign extend code no longer creates an identity shuffle with undef elements. The zero extend code now emits a zero_extend_vector_inreg instead of an unpckl with a zero vector.
For the high half of the custom lowering of zero_extend/any_extend, we're now using an unpckh with a zero vector or undef. Previously we used used a pshufd to move the upper 64-bits to the lower 64-bits and then used a zero_extend_vector_inreg. I think the zero vector should require less execution resources and be smaller code size.
Differential Revision: https://reviews.llvm.org/D54024
llvm-svn: 346043
A number of intrinsics, such as llvm.sin.f32, would result in a failure to
select. This patch adds expansions for the relevant selection DAG nodes, as
well as exhaustive testing for all f32 and f64 intrinsics.
The codegen for FMA remains a TODO item, pending support for the various
RISC-V FMA instruction variants.
The llvm.minimum.f32.* and llvm.maximum.* tests are commented-out, pending
upstream support for target-independent expansion, as discussed in
http://lists.llvm.org/pipermail/llvm-dev/2018-November/127408.html.
Differential Revision: https://reviews.llvm.org/D54034
Patch by Luís Marques.
llvm-svn: 346034
This is necessary as I'm wanting to remove the 'Constant Pool' shuffle decoding from getTargetShuffleMask - but using getTargetShuffleMaskIndices allows the shuffle combiner to realize that these calls are really broadcasts.....
As with a lot of the X86ISD::VPERMV3 code this causes some vperm2i/vperm2t shuffles to flip depending on optimal commutation.
llvm-svn: 346032
Summary:
EH stack depth is incremented at `try` and decremented at `catch`. When
there are more than two catch instructions for a try instruction, we
shouldn't count non-first catches when calculating EH stack depths.
This patch fixes two bugs:
- CFGStackify: Exclude `catch_all` in the terminate catch pad when
calculating EH pad stack, because when we have multiple catches for a
try we should count only the first catch instruction when calculating
EH pad stack.
- InstPrinter: The initial intention was also to exclude non-first
catches, but it didn't account nested try-catches, so it failed on
this case:
```
try
try
catch
end
catch <-- (1)
end
```
In the example, when we are at the catch (1), the last seen EH
instruction is not `try` but `end_try`, violating the wrong assumption.
We don't need these after we switch to the second proposal because there
is gonna be only one `catch` instruction. But anyway before then these
bugfixes are necessary for keep trunk in working state.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D53819
llvm-svn: 346029
As reported in PR38952, postra-machine-sink relies on DBG_VALUE insns being
adjacent to the def of the register that they reference. This is not always
true, leading to register copies being sunk but not the associated DBG_VALUEs,
which gives the debugger a bad variable location.
This patch collects DBG_VALUEs as we walk through a BB looking for copies to
sink, then passes them down to performSink. Compile-time impact should be
negligable.
Differential Revision: https://reviews.llvm.org/D53992
llvm-svn: 345996
Small-data (i.e. GP-relative) loads and stores allow 16-bit scaled
offset. For a load of a value of type T, the small-data area is
equivalent to an array "T sdata[65536]". This implies that objects
of smaller sizes need to be closer to the beginning of sdata,
while larger objects may be farther away, or otherwise the offset
may be insufficient to reach it. Similarly, an object of a larger
size should not be accessed via a load of a smaller size.
llvm-svn: 345975
reduceBuildVecConvertToConvertBuildVec vectorizes int2float in the DAGCombiner, which means that even if the LV/SLP has decided to keep scalar code using the cost models, this will override this.
While there are cases where vectorization is necessary in the DAG (mainly due to legalization artefacts), I don't think this is the case here, we should assume that the vectorizers know what they are doing.
Differential Revision: https://reviews.llvm.org/D53712
llvm-svn: 345964
Summary:
Assembly output can use globals like __stack_pointer implicitly,
but has no way of indicating the type of such a global, which makes
it hard for tools processing it (such as the MC Assembler) to
reconstruct this information.
The improved assembler directives parsing (in progress in
https://reviews.llvm.org/D53842) will make use of this information.
Also deleted code for the .import_global directive which was unused.
New test case in userstack.ll
Reviewers: dschuff, sbc100
Subscribers: jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54012
llvm-svn: 345917
I'm having trouble creating a test case for the ISD::TRUNCATE part of this that shows any codegen differences. But I was able to test the setcc path which is what the test changes here cover.
llvm-svn: 345908
Instruction mapping in the outliner uses "illegal numbers" to signify that
something can't ever be part of an outlining candidate. This means that the
number is unique and can't be part of any repeated substring.
Because each of these is unique, we can use a single unique number to represent
a range of things we can't outline.
The outliner tries to leverage this using a flag which is set in an MBB when
the previous instruction we tried to map was "illegal". This patch improves
that logic to work across MBBs. As a bonus, this also simplifies the mapping
logic somewhat.
This also updates the machine-outliner-remarks test, which was impacted by the
order of Candidates on an OutlinedFunction changing. This order isn't
guaranteed, so I added a FIXME to fix that in a follow-up. The order of
Candidates on an OutlinedFunction isn't important, so this still is NFC.
llvm-svn: 345906
Summary: Different variants of idot8 codegen dag patterns are not generated by llvm-tablegen due to a huge
increase in the compile time. Support the pattern that clang FE generates after reordering the
additions in integer-dot8 source language pattern.
Author: FarhanaAleen
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D53937
llvm-svn: 345902
Summary:
This function was causing a crash when `MaxElements == 1` because
it was trying to create a single element vector type.
Reviewers: dsanders, aemerson, aditya_nandakumar
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53734
llvm-svn: 345875
The test causes a crash because we were trying to extract v4f32 to v3f32, and the
narrowing factor was then 4/3 = 1 producing a bogus narrow type.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=39511
llvm-svn: 345842
Summary:
This adds dummy implementation of `EmitRawText` in `MCNullStreamer`.
This fixes the behavior of `AsmPrinter` with `MCNullStreamer` on targets
on which no integrated assembler is used. An attempt to emit inline asm
on such a target would previously lead to a crash, since `AsmPrinter` does not
check for `hasRawTextSupport` in `EmitInlineAsm` and calls `EmitRawText`
anyway if integrated assembler is disabled (the behavior has changed
in D2686).
Error message printed by MCStreamer:
> EmitRawText called on an MCStreamer that doesn't support it, something
> must not be fully mc'ized
Patch by Eugene Sharygin
Reviewers: dsanders, echristo
Reviewed By: dsanders
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53938
llvm-svn: 345841
While mutating instructions, we sign extended negative constant
operands for binary operators that can safely overflow. This was to
allow instructions, such as add nuw i8 %a, -2, to still be able to
perform a subtraction. However, the code to handle constants doesn't
take into consideration that instructions, such as sub nuw i8 -2, %a,
require the i8 -2 to be converted into i32 254.
This is a relatively simple fix, but I've taken the time to
reorganise the code a bit - mainly that instructions that can be
promoted are cached and splitting up the Mutate function.
Differential Revision: https://reviews.llvm.org/D53972
llvm-svn: 345840
When matching MipsISD::JmpLink t9, TargetExternalSymbol:i32'...',
wrong JALR16_MM is selected. This patch adds missing pattern for
JmpLink, so that JAL instruction is selected.
Differential Revision: https://reviews.llvm.org/D53366
llvm-svn: 345830
Reapplying an updated version of rL345395 (reverted in rL345451), now the issues noticed in PR39483 have been fixed.
This patch allows resolveTargetShuffleInputs to remove UNDEF inputs from cases where we have more than 2 inputs.
llvm-svn: 345824
In MipsBranchExpansion::splitMBB, upon splitting
a block with two direct branches, remove the successor
of the newly created block (which inherits successors from
the original block) which is pointed to by the last
branch in the original block only if the targets of two
branches differ.
This is to fix the failing test when ran with
-verify-machineinstrs enabled.
Differential Revision: https://reviews.llvm.org/D53756
llvm-svn: 345821
Summary:
Also reduce the test case for implicit defs and test it with all
register classes.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D53855
llvm-svn: 345794
I think this is the actual important property; the previous visibility
check was an approximation.
Differential Revision: https://reviews.llvm.org/D53852
llvm-svn: 345790
Shows up rarely for 64-bit arithmetic, more frequently for the compare
patterns added in r325323.
Differential Revision: https://reviews.llvm.org/D53848
llvm-svn: 345782
SimplifySetCC could shrink a load without checking for
profitability or legality of such shink with a target.
Added checks to prevent shrinking of aligned scalar loads
in AMDGPU below dword as scalar engine does not support it.
Differential Revision: https://reviews.llvm.org/D53846
llvm-svn: 345778
lowerRangeToAssertZExt currently relies on something like EarlyCSE having
eliminated the constant range [0,1). At -O0 this leads to an assert.
Differential Revision: https://reviews.llvm.org/D53888
llvm-svn: 345770
This feature is only relevant to shaders, and is no longer used. When disabled,
lowering of reserved registers for shaders causes a compiler crash.
Remove the feature and add a test for compilation of shaders at OptNone.
Differential Revision: https://reviews.llvm.org/D53829
llvm-svn: 345763
Before this patch DbgInfoAvailable was set to true in
DwarfDebug::beginModule() or CodeViewDebug::CodeViewDebug(). This made
MIR testing weird since passes would suddenly stop dealing with debug
info just because we stopped the pipeline before the debug printers.
This patch changes the logic to initialize DbgInfoAvailable based on the
fact that debug_compile_units exist in the llvm Module. The debug
printers may then override it with false in case of debug printing being
disabled.
Differential Revision: https://reviews.llvm.org/D53885
llvm-svn: 345740
Summary:
Instead of writing boolean values temporarily into 32-bit VGPRs
if they are involved in PHIs or are observed from outside a loop,
we use bitwise masking operations to combine lane masks in a way
that is consistent with wave control flow.
Move SIFixSGPRCopies to before this pass, since that pass
incorrectly attempts to move SGPR phis to VGPRs.
This should recover most of the code quality that was lost with
the bug fix in "AMDGPU: Remove PHI loop condition optimization".
There are still some relevant cases where code quality could be
improved, in particular:
- We often introduce redundant masks with EXEC. Ideally, we'd
have a generic computeKnownBits-like analysis to determine
whether masks are already masked by EXEC, so we can avoid this
masking both here and when lowering uniform control flow.
- The criterion we use to determine whether a def is observed
from outside a loop is conservative: it doesn't check whether
(loop) branch conditions are uniform.
Change-Id: Ibabdb373a7510e426b90deef00f5e16c5d56e64b
Reviewers: arsenm, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, mgorny, yaxunl, dstuttard, t-tye, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53496
llvm-svn: 345719
Summary:
The optimization to early break out of loops if all threads are dead was
never fully implemented.
But the PHI node analyzing is actually causing a number of problems, so
remove all the extra code for it.
(This does actually regress code quality in a few places because it
ends up relying more heavily on phi's of i1, which we don't do a
great job with. However, since it fixes real bugs in the wild, we
should take this change. I have some prototype changes to improve
i1 lowering in general -- not just for control flow -- which should
help recover the code quality, I just need to make those changes
fit for general consumption. -- Nicolai)
Change-Id: I6fc6c6c8961857ac6009fcfb9f7e5e48dc23fbb1
Patch-by: Christian König <christian.koenig@amd.com>
Reviewers: arsenm, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53359
llvm-svn: 345718
Our a16 support was only enabled for sample/gather and buffer
load/store, but not for image load/store operations (which take an i16
as the pixel index rather than a half).
Fix our isel lowering and add test cases to prove it out.
Differential Revision: https://reviews.llvm.org/D53750
llvm-svn: 345710
Emit pseudo instructions indicating unwind codes corresponding to each
instruction inside the prologue/epilogue. These are used by the MCLayer to
populate the .xdata section.
Differential Revision: https://reviews.llvm.org/D50288
llvm-svn: 345701
The debug-use flag must be set exactly for uses on DBG_VALUEs. This is
so obvious that it can be trivially inferred while parsing. This will
reduce noise when printing while omitting an information that has little
value to the user.
The parser will keep recognizing the flag for compatibility with old
`.mir` files.
Differential Revision: https://reviews.llvm.org/D53903
llvm-svn: 345671
Summary:
Thunk functions in Windows are varag functions that call a musttail function
to pass the arguments after the fixup is done. We need to make sure that we
forward the arguments from the caller vararg to the callee vararg function.
This is the same mechanism that is used for Windows on X86.
Reviewers: ssijaric, eli.friedman, TomTan, mgrang, mstorsjo, rnk, compnerd, efriedma
Reviewed By: efriedma
Subscribers: efriedma, kristof.beyls, chrib, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53843
llvm-svn: 345641
Summary:
Normalize the offset for endianess before checking
if the store cover the load in ForwardStoreValueToDirectLoad.
Without this we missed out on some optimizations for big
endian targets. If for example having a 4 bytes store followed
by a 1 byte load, loading the least significant byte from the
store, the STCoversLD check would fail (see @test4 in
test/CodeGen/AArch64/load-store-forwarding.ll).
This patch also fixes a problem seen in an out-of-tree target.
The target has i40 as a legal type, it is big endian,
and the StoreSize for i40 is 48 bits. So when normalizing
the offset for endianess we need to take the StoreSize into
account (assuming that padding added when storing into
a larger StoreSize always is added at the most significant
end).
Reviewers: niravd
Reviewed By: niravd
Subscribers: javed.absar, kristof.beyls, llvm-commits, uabelho
Differential Revision: https://reviews.llvm.org/D53776
llvm-svn: 345636
Prevents the post-RA scheduler from modifying the prologue sequences
emitting by frame lowering. This is roughly similar to what we do for
other targets: TargetInstrInfo::isSchedulingBoundary checks
isPosition(), which checks for CFI_INSTRUCTION.
isSEHInstruction is taken from D50288; it'll land with whatever patch
lands first.
Differential Revision: https://reviews.llvm.org/D53851
llvm-svn: 345634
Re-apply r345315 with testcase fixes.
Include all of the store's source vector operands when creating the
MachineMemOperand. Previously, we were missing the first operand,
making the store size seem smaller than it really is.
Differential Revision: https://reviews.llvm.org/D52816
llvm-svn: 345631
The CONCAT_VECTORS case was using the original mask element count to determine how to adjust the broadcast index. But if we looked through a bitcast the original mask size doesn't tell us anything about the concat_vectors.
This patch switchs to using the concat_vectors input element count directly instead.
Differential Revision: https://reviews.llvm.org/D53823
llvm-svn: 345626
The SchedModel allows the addition of ReadAdvances to express that certain
operands of the instructions are needed at a later point than the others.
RegAlloc may add pseudo operands that are not part of the instruction
descriptor, and therefore cannot have any read advance entries. This meant
that in some cases the desired read advance was nullified by such a pseudo
operand, which still had the original latency.
This patch fixes this by making sure that such pseudo operands get a zero
latency during DAG construction.
Review: Matthias Braun, Ulrich Weigand.
https://reviews.llvm.org/D49671
llvm-svn: 345606
Narrowing vector binops came up in the demanded bits discussion in D52912.
I don't think we're going to be able to do this transform in IR as a canonicalization
because of the risk of creating unsupported widths for vector ops, but we already have
a DAG TLI hook to allow what I was hoping for: isExtractSubvectorCheap(). This is
currently enabled for x86, ARM, and AArch64 (although only x86 has existing regression
test diffs).
This is artificially limited to not look through bitcasts because there are so many
test diffs already, but that's marked with a TODO and is a small follow-up.
Differential Revision: https://reviews.llvm.org/D53784
llvm-svn: 345602
Summary:
Because of the D48768, that pattern is always unfolded into pattern d,
thus we had no test coverage.
Reviewers: RKSimon, craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53574
llvm-svn: 345583
Similar to FoldCONCAT_VECTORS, this patch adds FoldBUILD_VECTOR to simplify cases that can avoid the creation of the BUILD_VECTOR - if all the operands are UNDEF or if the BUILD_VECTOR simplifies to a copy.
This exposed an assumption in some AMDGPU code that getBuildVector was guaranteed to be a BUILD_VECTOR node that I've tried to handle.
Differential Revision: https://reviews.llvm.org/D53760
llvm-svn: 345578
Summary: Previously if we had a bitcast vector output type that needs promotion and a vector input type that needs widening we would just do a stack store and load to handle the conversion. We can do a little better if we can widen the bitcast to a legal vector type the same size as the widened input type. Then we can do the bitcast between this widened type and the widened input type. Afterwards we can extract_subvector back to the original output and any_extend that. Type legalization will then circle back and handle promotion of the extract_subvector and the any_extend will just be removed. This will avoid going through the stack and allows us to remove a custom version of this legalization from X86.
Reviewers: efriedma, RKSimon
Reviewed By: efriedma
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53229
llvm-svn: 345567