This adjusts header file includes for headers and source files
in Core. In doing so, one dependency cycle is eliminated
because all the includes from Core to that project were dead
includes anyway. In places where some files in other projects
were only compiling due to a transitive include from another
header, fixups have been made so that those files also include
the header they need. Tested on Windows and Linux, and plan
to address failures on OSX and FreeBSD after watching the
bots.
llvm-svn: 299714
This fixes a bug introduced by r291559. The Module's FindType was
passing the original name not the basename in the case where it didn't
find any separators. I also added a testcase for this.
<rdar://problem/31159173>
llvm-svn: 298331
This was originall reverted due to some test failures in
ModuleCache and TestCompDirSymlink. These issues have all
been resolved and the code now passes all tests.
Differential Revision: https://reviews.llvm.org/D30698
llvm-svn: 297300
this reverts r297116 because it breaks the unittests and
TestCompDirSymlink. The ModuleCache unit test is trivially fixable, but
the CompDirSymlink failure is a symptom of a deeper problem: llvm's stat
functionality is not a drop-in replacement for lldb's. The former is
based on stat(2) (which does symlink resolution), while the latter is
based on lstat(2) (which does not).
This also reverts subsequent build fixes (r297128, r297120, 297117) and
r297119 (Remove FileSpec dependency on FileSystem) which builds on top
of this.
llvm-svn: 297139
This deletes LLDB's FileType enumeration and replaces all
users, and all calls to functions that check whether a file
exists etc with corresponding calls to LLVM.
Differential Revision: https://reviews.llvm.org/D30624
llvm-svn: 297116
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
Summary: This commit adds an option to set PC to the entry point of the file loaded using "target module load" command. In D28804, Greg asked me to separate this part under a different option.
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D28944
llvm-svn: 292989
For bare-metal targets, lldb was missing a command like 'load' in gdb
which can be used to create executable image on the target. This was
discussed in
http://lists.llvm.org/pipermail/lldb-dev/2016-December/011752.html
This commits adds an option to "target module load" command to provide
that functionality. It does not set the PC to entry address which will
be done separately.
Reviewed in https://reviews.llvm.org/D28804
llvm-svn: 292499
Previously it failed to handle nested types inside templated classes
making it impossible to look up these types using the fully qualified
name.
Differential revision: https://reviews.llvm.org/D28466
llvm-svn: 291559
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
Summary:
The only interesting part here is that TimePoint and TimeValue have different
natural string representations, which affects "target modules list" output. It
is now "2016-07-09 04:02:21.000000000", whereas previously in was
"Sat Jul 9 04:02:21 2016". I wanted to check if we're OK with that.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D26275
llvm-svn: 286349
Summary:
The only usage there was in GetModificationTime(). I also took the opportunity
to move this function from FileSpec to the FileSystem class - since we are
using FileSpecs to also represent remote files for which we cannot (easily)
retrieve modification time, it makes sense to make the decision to get the
modification time more explicit.
The new function returns a llvm::sys::TimePoint<>. To aid the transition
from TimeValue, I have added a constructor to it which enables implicit
conversion from a time_point.
Reviewers: zturner, clayborg
Subscribers: mehdi_amini, tberghammer, danalbert, beanz, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D25392
llvm-svn: 285702
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
Background: symbols and functions can be looked up by full mangled name and by basename. SymbolFile and ObjectFile are expected to be able to do the lookups based on full mangled name or by basename, so when the user types something that is incomplete, we must be able to look it up efficiently. For example the user types "a:🅱️:c" as a symbol to set a breakpoint on, we will break this down into a 'lookup "c"' and then weed out N matches down to just the ones that match "a:🅱️:c". Previously this was done manaully in many functions by calling Module::PrepareForFunctionNameLookup(...) and then doing the lookup and manually pruning the results down afterward with duplicated code. Now all places use Module::LookupInfo to do the work in one place.
This allowed me to fix the name lookups to look for "func" with eFunctionNameTypeFull as the "name_type_mask", and correctly weed the results:
"func", "func()", "func(int)", "a::func()", "b::func()", and "a:🅱️:func()" down to just "func", "func()", "func(int)". Previously we would have set 6 breakpoints, now we correctly set just 3. This also extends to the expression parser when it looks up names for functions it needs to not get multiple results so we can call the correct function.
<rdar://problem/24599697>
llvm-svn: 275281
In Address.cpp, we were asking for the lldb::eSymbolContextVariable to be resolved, yet we weren't using the variable. This code gets called when disassembling and can cause the manual creation of all global variables variables which can take minutes. Removing eSymbolContextVariable allows disassembly to not create these long pauses.
In Module.cpp, if someone only specified the lldb::eSymbolContextVariable flag, we would not look into a module's debug info, now we will.
<rdar://problem/26907449>
llvm-svn: 273307
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files
Each time a SymbolFile::FindTypes() is called, it needs to check the searched_symbol_files list to make sure it hasn't already been asked to find the type and return immediately if it has been checked. This will stop circular dependencies from also crashing LLDB during type queries.
This has proven to be an issue when debugging large applications on MacOSX that use DWARF in .o files.
<rdar://problem/24581488>
llvm-svn: 260434
This fixes the regression of several tests on Windows after rL258621.
The root problem is that ObjectFilePECOFF was not setting type information for the symbols, and the new CL rejects symbols without type information, breaking functionality like thread step-over.
The fix sets the type information for functions (and creates a TODO for other types).
Along the way, I fixed some typos and formatting that made the code I was debugging harder to understand.
In the long run, we should consider replacing most of ObjectFilePECOFF with the COFF parsing code from LLVM.
Differential Revision: http://reviews.llvm.org/D16563
llvm-svn: 258758
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
-> This patch was reverted due to segfaults in
FreeBSD and Mac, I fixed the problems for both now.
Reviewers: emaste, granata.enrico, jingham, clayborg
Differential Revision: http://reviews.llvm.org/D13290
llvm-svn: 249673
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
Reviewers: jingham, ovyalov, spyffe, richard.mitton, clayborg
Differential Revision: http://reviews.llvm.org/D12404
llvm-svn: 248366
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
* Change Module::MatchesModuleSpec to return true in case the file spec
in the specified module spec matches with the platform file spec, but
not with the local file spec
* Change the module_resolver used when resolving a remote shared module
to always set the platform file spec to the file spec requested
Differential revision: http://reviews.llvm.org/D12601
llvm-svn: 246852
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Another step towards isolating all language/AST specific code into the files to further abstract specific implementations of parsing types for a given language.
llvm-svn: 245090
Target and breakpoints options were added:
breakpoint set --language lang --name func
settings set target.language pascal
These specify the Language to use when interpreting the breakpoint's
expression (note: currently only implemented for breakpoints on
identifiers). If the breakpoint language is not set, the target.language
setting is used.
This support is required by Pascal, for example, to set breakpoint at 'ns.foo'
for function 'foo' in namespace 'ns'.
Tests on the language were also added to Module::PrepareForFunctionNameLookup
for efficiency.
Reviewed by: clayborg
Subscribers: jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D11119
llvm-svn: 242844
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
I am fixing this by:
1 - make sure we aren't trying to set the symbol file for a module to the same thing it already has and leaving it alone if it is the same
2 - keep all old symbol files around in the module in case there are any outstanding type references
<rdar://problem/18029116>
llvm-svn: 233757
So that we don't have to update every single #include in the entire
codebase to #include this new header (which used to get included by
lldb-private-log.h, we automatically #include "Logging.h" from
within "Log.h".
llvm-svn: 232653
This removes Host::Backtrace from the codebase, and changes all
call sites to use llvm::sys::PrintStackTrace(). This makes the
functionality available for all platforms, and even for platforms
which currently had a supported implementation of Host::Backtrace,
this patch should enable richer information in stack traces, such
as file and line number information, as well as giving it the
ability to unwind through inlined functions.
llvm-svn: 231511
This is part of a larger effort to reduce header file footprints.
Combined, these patches reduce the build time of LLDB locally by
over 30%. However, they touch many files and make many changes,
so will be submitted in small incremental pieces.
Reviewed By: Greg Clayton
Differential Revision: http://reviews.llvm.org/D8022
llvm-svn: 231097
Summary:
http://llvm.org/bugs/show_bug.cgi?id=20400
The default triple of i686-pc-linux-gnu for 32 bit linux targets is compatible
but not necessarily identical to the inferior binaries.
Applying Azat Khuzhin's solution of using ArchSpec::IsCompatibleMatch() instead
of ArchSpec::IsExactMatch() when comparing ObjectFile and Modules architecture.
Reviewers: vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7897
llvm-svn: 230694
Background: dyld binaries often have extra symbols in their symbol table like "malloc" and "free" for the early bringup of dyld and we often don't want to set breakpoints in dynamic linker binaries. We also don't want to call the "malloc" or "free" function in dyld when a user writes an expression like "(void *)malloc(123)" so we need to avoid doing name lookups in dyld. We mark Modules as being dynamic link editors and this helps do correct lookups for breakpoints by name and function lookups.
<rdar://problem/19716267>
llvm-svn: 228261