Summary:
Fix a corner case in `MDNode::getMostGenericTBAA` where we can sometimes
generate invalid TBAA metadata.
Reviewers: chandlerc, hfinkel, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26635
llvm-svn: 289403
Summary:
This never really got implemented, and was very hard to test before
a lot of the refactoring changes to make things more robust. But now we
can test it thoroughly and cleanly, especially at the CGSCC level.
The core idea is that when an inner analysis manager proxy receives the
invalidation event for the outer IR unit, it needs to walk the inner IR
units and propagate it to the inner analysis manager for each of those
units. For example, each function in the SCC needs to get an
invalidation event when the SCC gets one.
The function / module interaction is somewhat boring here. This really
becomes interesting in the face of analysis-backed IR units. This patch
effectively handles all of the CGSCC layer's needs -- both invalidating
SCC analysis and invalidating function analysis when an SCC gets
invalidated.
However, this second aspect doesn't really handle the
LoopAnalysisManager well at this point. That one will need some change
of design in order to fully integrate, because unlike the call graph,
the entire function behind a LoopAnalysis's results can vanish out from
under us, and we won't even have a cached API to access. I'd like to try
to separate solving the loop problems into a subsequent patch though in
order to keep this more focused so I've adapted them to the API and
updated the tests that immediately fail, but I've not added the level of
testing and validation at that layer that I have at the CGSCC layer.
An important aspect of this change is that the proxy for the
FunctionAnalysisManager at the SCC pass layer doesn't work like the
other proxies for an inner IR unit as it doesn't directly manage the
FunctionAnalysisManager and invalidation or clearing of it. This would
create an ever worsening problem of dual ownership of this
responsibility, split between the module-level FAM proxy and this
SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy
to work in terms of the module-level proxy and defer to it to handle
much of the updates. It only does SCC-specific invalidation. This will
become more important in subsequent patches that support more complex
invalidaiton scenarios.
Reviewers: jlebar
Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D27197
llvm-svn: 289317
accept an Invalidator that allows them to invalidate themselves if their
dependencies are in turn invalidated.
Rather than recording the dependency graph ahead of time when analysis
get results from other analyses, this simply lets each result trigger
the immediate invalidation of any analyses they actually depend on. They
do this in a way that has three nice properties:
1) They don't have to handle transitive dependencies because the
infrastructure will recurse for them.
2) The invalidate methods are still called only once. We just
dynamically discover the necessary topological ordering, everything
is memoized nicely.
3) The infrastructure still provides a default implementation and can
access it so that only analyses which have dependencies need to do
anything custom.
To make this work at all, the invalidation logic also has to defer the
deletion of the result objects themselves so that they can remain alive
until we have collected the complete set of results to invalidate.
A unittest is added here that has exactly the dependency pattern we are
concerned with. It hit the use-after-free described by Sean in much
detail in the long thread about analysis invalidation before this
change, and even in an intermediate form of this change where we failed
to defer the deletion of the result objects.
There is an important problem with doing dependency invalidation that
*isn't* solved here: we don't *enforce* that results correctly
invalidate all the analyses whose results they depend on.
I actually looked at what it would take to do that, and it isn't as hard
as I had thought but the complexity it introduces seems very likely to
outweigh the benefit. The technique would be to provide a base class for
an analysis result that would be populated with other results, and
automatically provide the invalidate method which immediately does the
correct thing. This approach has some nice pros IMO:
- Handles the case we care about and nothing else: only *results*
that depend on other analyses trigger extra invalidation.
- Localized to the result rather than centralized in the analysis
manager.
- Ties the storage of the reference to another result to the triggering
of the invalidation of that analysis.
- Still supports extending invalidation in customized ways.
But the down sides here are:
- Very heavy-weight meta-programming is needed to provide this base
class.
- Requires a pretty awful API for accessing the dependencies.
Ultimately, I fear it will not pull its weight. But we can re-evaluate
this at any point if we start discovering consistent problems where the
invalidation and dependencies get out of sync. It will fit as a clean
layer on top of the facilities in this patch that we can add if and when
we need it.
Note that I'm not really thrilled with the names for these APIs... The
name "Invalidator" seems ok but not great. The method name "invalidate"
also. In review some improvements were suggested, but they really need
*other* uses of these terms to be updated as well so I'm going to do
that in a follow-up commit.
I'm working on the actual fixes to various analyses that need to use
these, but I want to try to get tests for each of them so we don't
regress. And those changes are seperable and obvious so once this goes
in I should be able to roll them out throughout LLVM.
Many thanks to Sean, Justin, and others for help reviewing here.
Differential Revision: https://reviews.llvm.org/D23738
llvm-svn: 288077
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
llvm-svn: 287783
This mostly gives us nice unittesting of the predicates themselves. I'll
start using them further in subsequent commits to help test the actual
operations performed on the graph.
llvm-svn: 287698
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
llvm-svn: 287232
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
llvm-svn: 286291
The basic inlining operation makes the following changes to the call graph:
1) Add edges that were previously transitive edges. This is always trivial and
this patch gives the LCG helper methods to make this more convenient.
2) Remove the inlined edge. We had existing support for this, but it contained
bugs that needed to be fixed. Testing in the same pattern as the inliner
exposes these bugs very nicely.
3) Delete a function when it becomes dead because it is internal and all calls
have been inlined. The LCG had no support at all for this operation, so this
adds that support.
Two unittests have been added that exercise this specific mutation pattern to
the call graph. They were extremely effective in uncovering bugs. Sadly,
a large fraction of the code here is just to implement those unit tests, but
I think they're paying for themselves. =]
This was split out of a patch that actually uses the routines to
implement inlining in the new pass manager in order to isolate (with
unit tests) the logic that was entirely within the LCG.
Many thanks for the careful review from folks! There will be a few minor
follow-up patches based on the comments in the review as well.
Differential Revision: https://reviews.llvm.org/D24225
llvm-svn: 283982
a function pass nested inside of a CGSCC pass manager.
This is very similar to the previous unittest but makes sure the
invalidation logic works across all the layers here.
llvm-svn: 282378
This reinstates r280447. Original commit log:
This wasn't really well explicitly tested with a nice unittest before.
It seems good to have reasonably broken out unittests for this kind of
functionality as I'm workin go other invalidation features to make sure
none of the existing ones regress.
This still has too much duplicated code, I plan to factor that out in
a subsequent commit to use common helpers for repeated parts of this.
llvm-svn: 282377
LazyCallGraph to support repeated, stable iterations, even in the face
of graph updates.
This is particularly important to allow the CGSCC pass manager to walk
the RefSCCs (and thus everything else) in a module more than once. Lots
of unittests and other tests were hard or impossible to write because
repeated CGSCC pass managers which didn't invalidate the LazyCallGraph
would conclude the module was empty after the first one. =[ Really,
really bad.
The interesting thing is that in many ways this simplifies the code. We
can now re-use the same code for handling reference edge insertion
updates of the RefSCC graph as we use for handling call edge insertion
updates of the SCC graph. Outside of adapting to the shared logic for
this (which isn't trivial, but is *much* simpler than the DFS it
replaces!), the new code involves putting newly created RefSCCs when
deleting a reference edge into the cached list in the correct way, and
to re-formulate the iterator to be stable and effective even in the face
of these kinds of updates.
I've updated the unittests for the LazyCallGraph to re-iterate the
postorder sequence and verify that this all works. We even check for
using alternating iterators to trigger the lazy formation of RefSCCs
after mutation has occured.
It's worth noting that there are a reasonable number of likely
simplifications we can make past this. It isn't clear that we need to
keep the "LeafRefSCCs" around any more. But I've not removed that mostly
because I want this to be a more isolated change.
Differential Revision: https://reviews.llvm.org/D24219
llvm-svn: 281716
The test exercises the branch in scev expansion when the value in ValueOffsetPair
is a ptr and the offset is not divisible by the elem type size of value.
Differential Revision: https://reviews.llvm.org/D24088
llvm-svn: 281575
This was mistakenly committed. The world isn't ready for this test, the
test code has horrible debugging code in it that should never have
landed in tree, it currently passes because of bugs elsewhere, and it
needs to be rewritten to not be susceptible to passing for the wrong
reasons.
I'll re-land this in a better form when the prerequisite patches land.
So sorry that I got this mixed into a series of commits that *were*
ready to land. I shouldn't have. =[ What's worse is that it stuck around
for so long and I discovered it while fixing the underlying bug that
caused it to pass.
llvm-svn: 280620
constructor when trying to do copy construction by adding an explicit
move constructor.
Will watch the bots to discover if this is sufficient.
llvm-svn: 280479
This wasn't really well explicitly tested with a nice unittest before.
It seems good to have reasonably broken out unittests for this kind of
functionality as I'm workin go other invalidation features to make sure
none of the existing ones regress.
This still has too much duplicated code, I plan to factor that out in
a subsequent commit to use common helpers for repeated parts of this.
llvm-svn: 280447
passes.
This simplifies the test some and makes it more focused and clear what
is being tested. It will also make it much easier to extend with further
testing of different pass behaviors.
I've also replaced a pointless module pass with running the requires
pass directly as that is all that it was really doing.
llvm-svn: 280444
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
Currently nodes_iterator may dereference to a NodeType* or a NodeType&. Make them all dereference to NodeType*, which is NodeRef later.
Differential Revision: https://reviews.llvm.org/D23704
Differential Revision: https://reviews.llvm.org/D23705
llvm-svn: 279326
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
We should update results of the BranchProbabilityInfo after removing block in JumpThreading. Otherwise
we will get dangling pointer inside BranchProbabilityInfo cache.
Differential Revision: http://reviews.llvm.org/D20957
llvm-svn: 272891
Summary:
...loop after the last iteration.
This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.
This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.
The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.
Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.
Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.
We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.
Reviewers: chandlerc
Subscribers: sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11758
llvm-svn: 269388
A loop pass that didn't preserve this entire set of passes wouldn't
play well with other loop passes, since these are generally a basic
requirement to do any interesting transformations to a loop.
Adds a helper to get the set of analyses a loop pass should preserve,
and checks that any loop pass we run satisfies the requirement.
llvm-svn: 268444
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
llvm-svn: 263318
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
parts of the AA interface out of the base class of every single AA
result object.
Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.
When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.
To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).
However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.
The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.
It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.
However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.
Differential Revision: http://reviews.llvm.org/D17329
llvm-svn: 262490
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.
Reviewers: chandlerc, hfinkel
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17632
llvm-svn: 261958
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
llvm-svn: 261831
pattern that triggers it. This essentially requires an immutable
function analysis, as that will survive anything we do to invalidate it.
When we have such patterns, the function analysis manager will not get
cleared between runs of the proxy.
If we actually need an assert about how things are queried, we can add
more elaborate machinery for computing it, but so far I'm not aware of
significant value provided.
Thanks to Justin Lebar for noticing this when he made a (seemingly
innocuous) change to FunctionAttrs that is enough to trigger it in one
test there. Now it is covered by a direct test of the pass manager code.
llvm-svn: 261627
system.
Previously, this was only being tested with larger integration tests.
That makes it hard to isolated specific issues with it, and makes the
APIs themselves less well tested. Add a unittest based around the same
patterns used for testing the general pass manager.
llvm-svn: 261624
Before this patch simplified SCEV expressions for PHI nodes were only returned
the very first time getSCEV() was called, but later calls to getSCEV always
returned the non-simplified value, which had "temporarily" been stored in the
ValueExprMap, but was never removed and consequently blocked the caching of the
simplified PHI expression.
llvm-svn: 261485
it to actually test the new pass manager AA wiring.
This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.
Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.
Differential Revision: http://reviews.llvm.org/D17372
llvm-svn: 261403
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.
I plan to add more tests as I add new functionality and find/fix bugs.
Reviewers: chandlerc, hfinkel, sanjoy
Subscribers: zzheng, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D16623
llvm-svn: 260169
differentiate between indirect references to functions an direct calls.
This doesn't do a whole lot yet other than change the print out produced
by the analysis, but it lays the groundwork for a very major change I'm
working on next: teaching the call graph to actually be a call graph,
modeling *both* the indirect reference graph and the call graph
simultaneously. More details on that in the next patch though.
The rest of this is essentially a bunch of over-engineering that won't
be interesting until the next patch. But this also isolates essentially
all of the churn necessary to introduce the edge abstraction from the
very important behavior change necessary in order to separately model
the two graphs. So it should make review of the subsequent patch a bit
easier at the cost of making this patch seem poorly motivated. ;]
Differential Revision: http://reviews.llvm.org/D16038
llvm-svn: 259463
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
"external" AA wrapper pass.
This is a generic hook that can be used to thread custom code into the
primary AAResultsWrapperPass for the legacy pass manager in order to
allow it to merge external AA results into the AA results it is
building. It does this by threading in a raw callback and so it is
*very* powerful and should serve almost any use case I have come up with
for extending the set of alias analyses used. The only thing not well
supported here is using a *different order* of alias analyses. That form
of extension *is* supportable with the new pass manager, and I can make
the callback structure here more elaborate to support it in the legacy
pass manager if this is a critical use case that people are already
depending on, but the only use cases I have heard of thus far should be
reasonably satisfied by this simpler extension mechanism.
It is hard to test this using normal facilities (the built-in AAs don't
use this for obvious reasons) so I've written a fairly extensive set of
custom passes in the alias analysis unit test that should be an
excellent test case because it models the out-of-tree users: it adds
a totally custom AA to the system. This should also serve as
a reasonably good example and guide for out-of-tree users to follow in
order to rig up their existing alias analyses.
No support in opt for commandline control is provided here however. I'm
really unhappy with the kind of contortions that would be required to
support that. It would fully re-introduce the analysis group
self-recursion kind of patterns. =/
I've heard from out-of-tree users that this will unblock their use cases
with extending AAs on top of the new infrastructure and let us retain
the new analysis-group-free-world.
Differential Revision: http://reviews.llvm.org/D13418
llvm-svn: 250894
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
We only looked through casts when one operand was a constant. We can also look through casts when both operands are non-constant, but both are in fact the same cast type. For example:
%1 = icmp ult i8 %a, %b
%2 = zext i8 %a to i32
%3 = zext i8 %b to i32
%4 = select i1 %1, i32 %2, i32 %3
llvm-svn: 246678
folding the code into the main Analysis library.
There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.
Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.
I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.
Differential Revision: http://reviews.llvm.org/D12075
llvm-svn: 245318
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
llvm-svn: 244580
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
llvm-svn: 244197
preparation for de-coupling the AA implementations.
In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.
I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.
I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.
Differential Revision: http://reviews.llvm.org/D10564
llvm-svn: 242963
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
llvm-svn: 239885
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
The specializations were broken. For example,
void foo(const CallGraph *G) {
auto I = GraphTraits<const CallGraph *>::nodes_begin(G);
auto K = I++;
...
}
or
void bar(const CallGraphNode *N) {
auto I = GraphTraits<const CallGraphNode *>::nodes_begin(G);
auto K = I++;
....
}
would not compile.
Patch by Speziale Ettore!
llvm-svn: 222149
gcc's (4.7, I think) -Wcomment warning is not "as smart" as clang's and
warns even if the line right after the backslash-newline sequence only has
a line comment that starts at the beginning of the line.
llvm-svn: 220360
* Use StringRef instead of std::string&
* Return a std::unique_ptr<Module> instead of taking an optional module to write
to (was not really used).
* Use current comment style.
* Use current naming convention.
llvm-svn: 215989
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
operations on the call graph. This one forms a cycle, and while not as
complex as removing an internal edge from an SCC, it involves
a reasonable amount of work to find all of the nodes newly connected in
a cycle.
Also somewhat alarming is the worst case complexity here: it might have
to walk roughly the entire SCC inverse DAG to insert a single edge. This
is carefully documented in the API (I hope).
llvm-svn: 207935
This fix simply ensures that both metadata nodes are path-aware before
performing path-aware alias analysis.
This issue isn't normally triggered in LLVM, because we perform an autoupgrade
of the TBAA metadata to the new format when reading in LL or BC files. This
issue only appears when a client creates the IR manually and mixes old and new
TBAA metadata format.
This fixes <rdar://problem/16760860>.
llvm-svn: 207923
just connects an SCC to one of its descendants directly. Not much of an
impact. The last one is the hard one -- connecting an SCC to one of its
ancestors, and thereby forming a cycle such that we have to merge all
the SCCs participating in the cycle.
llvm-svn: 207751
of SCCs in the SCC DAG. Exercise them in the big graph test case. These
will be especially useful for establishing invariants in insertion
logic.
llvm-svn: 207749
edge entirely within an existing SCC. Shockingly, making the connected
component more connected is ... a total snooze fest. =]
Anyways, its wired up, and I even added a test case to make sure it
pretty much sorta works. =D
llvm-svn: 207631
bits), and discover that it's totally broken. Yay tests. Boo bug. Fix
the basic edge removal so that it works by nulling out the removed edges
rather than actually removing them. This leaves the indices valid in the
map from callee to index, and preserves some of the locality for
iterating over edges. The iterator is made bidirectional to reflect that
it now has to skip over null entries, and the skipping logic is layered
onto it.
As future work, I would like to track essentially the "load factor" of
the edge list, and when it falls below a threshold do a compaction.
An alternative I considered (and continue to consider) is storing the
callees in a doubly linked list where each element of the list is in
a set (which is essentially the classical linked-hash-table
datastructure). The problem with that approach is that either you need
to heap allocate the linked list nodes and use pointers to them, or use
a bucket hash table (with even *more* linked list pointer overhead!),
etc. It's pretty easy to get 5x overhead for values that are just
pointers. So far, I think punching holes in the vector, and periodic
compaction is likely to be much more efficient overall in the space/time
tradeoff.
llvm-svn: 207619
contract (and be much more useful). It now provides exactly the
post-order traversal a caller might need to perform on newly formed
SCCs.
llvm-svn: 207410
API requirements much more obvious.
The key here is that there are two totally different use cases for
mutating the graph. Prior to doing any SCC formation, it is very easy to
mutate the graph. There may be users that want to do small tweaks here,
and then use the already-built graph for their SCC-based operations.
This method remains on the graph itself and is documented carefully as
being cheap but unavailable once SCCs are formed.
Once SCCs are formed, and there is some in-flight DFS building them, we
have to be much more careful in how we mutate the graph. These mutation
operations are sunk onto the SCCs themselves, which both simplifies
things (the code was already there!) and helps make it obvious that
these interfaces are only applicable within that context. The other
primary constraint is that the edge being mutated is actually related to
the SCC on which we call the method. This helps make it obvious that you
cannot arbitrarily mutate some other SCC.
I've tried to write much more complete documentation for the interesting
mutation API -- intra-SCC edge removal. Currently one aspect of this
documentation is a lie (the result list of SCCs) but we also don't even
have tests for that API. =[ I'm going to add tests and fix it to match
the documentation next.
llvm-svn: 207339
than functions. So far, this access pattern is *much* more common. It
seems likely that any user of this interface is going to have nodes at
the point that they are querying the SCCs.
No functionality changed.
llvm-svn: 207045
This implements the core functionality necessary to remove an edge from
the call graph and correctly update both the basic graph and the SCC
structure. As part of that it has to run a tiny (in number of nodes)
Tarjan-style DFS walk of an SCC being mutated to compute newly formed
SCCs, etc.
This is *very rough* and a WIP. I have a bunch of FIXMEs for code
cleanup that will reduce the boilerplate in this change substantially.
I also have a bunch of simplifications to various parts of both
algorithms that I want to make, but first I'd like to have a more
holistic picture. Ideally, I'd also like more testing. I'll probably add
quite a few more unit tests as I go here to cover the various different
aspects and corner cases of removing edges from the graph.
Still, this is, so far, successfully updating the SCC graph in-place
without disrupting the identity established for the existing SCCs even
when we do challenging things like delete the critical edge that made an
SCC cycle at all and have to reform things as a tree of smaller SCCs.
Getting this to work is really critical for the new pass manager as it
is going to associate significant state with the SCC instance and needs
it to be stable. That is also the motivation behind the return of the
newly formed SCCs. Eventually, I'll wire this all the way up to the
public API so that the pass manager can use it to correctly re-enqueue
newly formed SCCs into a fresh postorder traversal.
llvm-svn: 206968
up the stack finishing the exploration of each entries children before
we're finished in addition to accounting for their low-links. Added
a unittest that really hammers home the need for this with interlocking
cycles that would each appear distinct otherwise and crash or compute
the wrong result. As part of this, nuke a stale fixme and bring the rest
of the implementation still more closely in line with the original
algorithm.
llvm-svn: 206966
resisted this for too long. Just with the basic testing here I was able
to exercise the analysis in more detail and sift out both type signature
bugs in the API and a bug in the DFS numbering. All of these are fixed
here as well.
The unittests will be much more important for the mutation support where
it is necessary to craft minimal mutations and then inspect the state of
the graph. There is just no way to do that with a standard FileCheck
test. However, unittesting these kinds of analyses is really quite easy,
especially as they're designed with the new pass manager where there is
essentially no infrastructure required to rig up the core logic and
exercise it at an API level.
As a minor aside about the DFS numbering bug, the DFS numbering used in
LCG is a bit unusual. Rather than numbering from 0, we number from 1,
and use 0 as the sentinel "unvisited" state. Other implementations often
use '-1' for this, but I find it easier to deal with 0 and it shouldn't
make any real difference provided someone doesn't write silly bugs like
forgetting to actually initialize the DFS numbering. Oops. ;]
llvm-svn: 206954
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
business.
This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.
This is one step toward making LLVM's Support library survive a C++
modules bootstrap.
llvm-svn: 202814
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
to find loops if the From and To instructions were in the same block.
Refactor the code a little now that we need to fill to start the CFG-walking
algorithm with more than one starting basic block sometimes.
Special thanks to Andrew Trick for catching an error in my understanding of
natural loops in code review.
llvm-svn: 188236
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
llvm-svn: 187283
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Makefiles, the CMake files in every other part of the LLVM tree, and
sanity.
This should also restore the output tree structure of all the unit
tests, sorry for breaking that, and thanks for letting me know.
The fundamental change is to put a CMakeLists.txt file in the unittest
directory, with a single test binary produced from it. This has several
advantages:
- No more weird directory stripping in the unittest macro, allowing it
to be used more readily in other projects.
- No more directory prefixes on all the source files.
- Allows correct and precise use of LLVM's per-directory dependency
system.
- Allows use of the checking logic for source files that have not been
added to the CMake build. This uncovered a file being skipped with
CMake in LLVM and one in Clang's unit tests.
- Makes Specifying conditional compilation or other custom logic for JIT
tests easier.
It did require adding the concept of an explicit 'optional' source file
to the CMake build so that the missing-file check can skip cases where
the file is *supposed* to be missing. =]
This is another chunk of refactoring the CMake build in order to make it
usable for other clients like CompilerRT / ASan / TSan.
Note that this is interdependent with a Clang CMake change.
llvm-svn: 158909
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
of Value deletions and RAUWs, instead of relying on ScalarEvolution's
Scalars map being notified, as that's complicated at best, and
insufficient in general.
This means SCEVUnknown needs a non-trivial destructor, so introduce
a mechanism to allow ScalarEvolution to locate all the SCEVUnknowns.
llvm-svn: 110086
extend it to handle the case where multiple RAUWs affect a single
SCEVUnknown.
Add a ScalarEvolution unittest to test for this situation.
llvm-svn: 109705