Add support for linking powerpcle code in LLD.
Rewrite lld/test/ELF/emulation-ppc.s to use a shared check block and add powerpcle tests.
Update tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93917
This patch changes the archive handling to enable the semantics needed
for legacy FORTRAN common blocks and block data. When we have a COMMON
definition of a symbol and are including an archive, LLD will now
search the members for global/weak defintions to override the COMMON
symbol. The previous LLD behavior (where a member would only be included
if it satisifed some other needed symbol definition) can be re-enabled with the
option '-no-fortran-common'.
Differential Revision: https://reviews.llvm.org/D86142
I noticed when running a large link with the --time-trace option that
there were several areas which were missing any specific time trace
categories (aside from the generic link/ExecuteLinker categories). This
patch adds new categories to fill most of the "gaps", or to provide more
detail than was previously provided.
Reviewed by: MaskRay, grimar, russell.gallop
Differential Revision: https://reviews.llvm.org/D90686
In ELF/InputFiles.cpp, getBitcodeMachineKind() is limited to uint8_t return
type. This works as long as EM_xxx is < 256, which is true for common
architectures, but not for some newly assigned or unofficial EM_* values.
The corresponding ELF field (e_machine) can hold uint16_t.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89185
Optimize the filename glob pattern matching in
LinkerScript::computeInputSections() and LinkerScript::shouldKeep().
Add InputFile::getNameForScript() which gets and if required caches the
Inputfile's name used for linker script matching. This avoids the
overhead of name creation that was in getFilename() in LinkerScript.cpp.
Add InputSectionDescription::matchesFile() and
SectionPattern::excludesFile() which perform the glob pattern matching
for an InputFile and make use of a cache of the previous result. As both
computeInputSections() and shouldKeep() process sections in order and
the sections of the same InputFile are contiguous, these single entry
caches can significantly speed up performance for more complex glob
patterns.
These changes have been seen to reduce link time with --gc-sections by
up to ~40% with linker scripts that contain KEEP filename glob patterns
such as "*crtbegin*.o".
Differential Revision: https://reviews.llvm.org/D87469
`ELFFile<ELFT>` has many methods that take pointers,
though they assume that arguments are never null and
hence could take references instead.
This patch performs such clean-up.
Differential revision: https://reviews.llvm.org/D87385
Currently we treat SHT_RISCV_ATTRIBUTES like a normal section and
concatenate all such input sections, yielding invalid output unless only
a single attributes section is present in the input. Instead, pick the
first as with SHT_ARM_ATTRIBUTES. We do not currently need to condition
our behaviour on the contents, unlike Arm. In future, we should both do
stricter validation of the input and merge all sections together to
ensure we have, for example, the full arch string requirement, but this
rudimentary implementation is good enough for most common cases.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D86309
Part of https://bugs.llvm.org/show_bug.cgi?id=41734
The semantics of SHF_LINK_ORDER have been extended to represent metadata
sections associated with some other sections (usually text).
The associated text section may be discarded (e.g. LTO) and we want the
metadata section to have sh_link=0 (D72899, D76802).
Normally the metadata section is only referenced by the associated text
section. sh_link=0 means the associated text section is discarded, and
the metadata section will be garbage collected. If there is another
section (.gc_root) referencing the metadata section, the metadata
section will be retained. It's the .gc_root consumer's job to validate
the metadata sections.
# This creates a SHF_LINK_ORDER .meta with sh_link=0
.section .meta,"awo",@progbits,0
1:
.section .meta,"awo",@progbits,foo
2:
.section .gc_root,"a",@progbits
.quad 1b
.quad 2b
Reviewed By: pcc, jhenderson
Differential Revision: https://reviews.llvm.org/D72904
Clang and GCC have a feature (-MD flag) to create a dependency file
in a format that build systems such as Make or Ninja can read, which
specifies all the additional inputs such .h files.
This change introduces the same functionality to lld bringing it to
feature parity with ld and gold which gained this feature recently.
See https://sourceware.org/bugzilla/show_bug.cgi?id=22843 for more
details and discussion.
The implementation corresponds to -MD -MP compiler flag where the
generated dependency file also includes phony targets which works
around the errors where the dependency is removed. This matches the
format used by ld and gold.
Fixes PR42806
Differential Revision: https://reviews.llvm.org/D82437
Clang and GCC have a feature (-MD flag) to create a dependency file
in a format that build systems such as Make or Ninja can read, which
specifies all the additional inputs such .h files.
This change introduces the same functionality to lld bringing it to
feature parity with ld and gold which gained this feature recently.
See https://sourceware.org/bugzilla/show_bug.cgi?id=22843 for more
details and discussion.
The implementation corresponds to -MD -MP compiler flag where the
generated dependency file also includes phony targets which works
around the errors where the dependency is removed. This matches the
format used by ld and gold.
Fixes PR42806
Differential Revision: https://reviews.llvm.org/D82437
-r --gc-sections is usually not useful because it just makes intermediate output
smaller. https://bugs.llvm.org/show_bug.cgi?id=46700#c7 mentions a use case:
validating the absence of undefined symbols ealier than in the final link.
After D84129 (SHT_GROUP support in -r links), we can support -r
--gc-sections without extra code. So let's allow it.
Reviewed By: grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D84131
It allows handling cases when we have SHT_REL[A] sections before target
sections in objects.
This fixes https://bugs.llvm.org/show_bug.cgi?id=46632
which says: "Normally it is not what compilers would emit. We have to support it,
because some custom tools might want to use this feature, which is not restricted by ELF gABI"
Differential revision: https://reviews.llvm.org/D83469
D79300 forgot to change `getBuffer().empty()` in LazyObjFile::parse to
`fetched`. This caused incorrect iterating after the current LazyObjFile was
fetched. This issue is benign and can just cause loss of "undefined symbols"
and "backward reference" diagnostics.
Before D79300 `mb = {}` caused --warn-backrefs-exclude to be useless for
a fetched LazyObjFile.
Add two test cases.
Fixes PR46348.
ObjFile<ELFT>::initializeSymbols contains two symbol iteration loops:
```
for each symbol
if non-inheriting && non-local
fill in this->symbols[i]
for each symbol
if local
fill in this->symbols[i]
else
symbol resolution
```
Symbol resolution can trigger a duplicate symbol error which will call
InputSectionBase::getObjMsg to iterate over InputFile::symbols. If a
non-local symbol appears after the non-local symbol being resolved
(violating ELF spec), its `this->symbols[i]` entry has not been filled
in, InputSectionBase::getObjMsg will crash due to
`dyn_cast<Defined>(nullptr)`.
To fix the bug, reorganize the two loops to ensure this->symbols is
complete before symbol resolution. This enforces the invariant:
InputFile::symbols has none null entry when InputFile::getSymbols() is called.
```
for each symbol
if non-inheriting
fill in this->symbols[i]
for each symbol starting from firstGlobal
if non-local
symbol resolution
```
Additionally, move the (non-local symbol in local part of .symtab)
diagnostic from Writer<ELFT>::copyLocalSymbols() to initializeSymbols().
Reviewed By: grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D81988
Fixes PR45594.
In `ObjFile<ELFT>::initializeSymbols()`, for a defined symbol relative to
a discarded section (due to section group rules), it may have been
inserted as a lazy symbol. We need to demote it to an Undefined to
enable the `discarded section` error happened in a later pass.
Add `LazyObjFile::fetched` (if true) and `ArchiveFile::parsed` (if
false) to represent that there is an ongoing lazy symbol fetch and we
should replace the current lazy symbol with an Undefined, instead of
calling `Symbol::resolve` (`Symbol::resolve` should be called if the lazy
symbol was added by an unrelated archive/lazy object).
As a side result, one small issue in start-lib-comdat.s is now fixed.
The hack motivating D51892 will be unsupported: if
`.gnu.linkonce.t.__i686.get_pc_thunk.bx` in an archive is referenced
by another section, this will likely be errored unless the function is
also defined in a regular object file.
(Bringing back rL330869 would error `undefined symbol` instead of the
more relevant `discarded section`.)
Note, glibc i386's crti.o still works (PR31215), because
`.gnu.linkonce.t.__x86.get_pc_thunk.bx` is in crti.o (one of the first
regular object files in a linker command line).
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D79300
Bazel created interface shared objects (.ifso) may be misaligned. We use
llvm::support::detail::packed_endian_specific_integral under the hood
which allows reading of misaligned values, so there is not a need to
diagnose (in LLD we don't intend to support sophisticated parsing for
SHT_GNU_*).
An undefined symbol in a shared object can be versioned, like `f@v1`.
We currently insert `f` as an Undefined into the symbol table, but we
should insert `f@v1` instead.
The string `v1` is inferred from SHT_GNU_versym and SHT_GNU_verneed.
This patch implements the functionality.
Failing to do this can cause two issues:
* If a versioned symbol referenced by a shared object is defined in the
executable, we will fail to export it.
* If a versioned symbol referenced by a shared object in another object
file, --no-allow-shlib-undefined may spuriously report an
"undefined reference to " error. See https://bugs.llvm.org/show_bug.cgi?id=44842
(Linking -lfftw3 -lm on Arch Linux can cause
`undefined reference to __log_finite`)
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D80059
This is fixing a thinLTO module collision issue for thin archives. The problem is that we always use a zero offset to name members in a thin archive and that causes the following build error:
ld.lld: error: Expected at most one ThinLTO module per bitcode file
which happens to a thin archive that has two members with the same object file name (whose paths will be ignored by thinLTO driver)
The fix here is to use real member offset instead as is done for non-thin archives.
Differential Revision: https://reviews.llvm.org/D79880
gold has an option --print-symbol-counts= which prints:
// For each archive
archive $archive $members $fetched_members
// For each object file
symbols $object $defined_symbols $used_defined_symbols
In most cases, `$defined_symbols = $used_defined_symbols` unless weak
symbols are present. Strangely `$used_defined_symbols` includes symbols defined relative to --gc-sections discarded sections.
The `symbols` lines do not appear to be useful.
`archive` lines are useful: `$fetched_members=0` lines correspond to
unused archives. The information can be used to trim dependencies.
This patch implements --print-archive-stats= which prints the number of
members and the number of fetched members for each archive.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D78983
Leverage ARM ELF build attribute section to create ELF attribute section
for RISC-V. Extract the common part of parsing logic for this section
into ELFAttributeParser.[cpp|h] and ELFAttributes.[cpp|h].
Differential Revision: https://reviews.llvm.org/D74023
Any OUTPUT_FORMAT in a linker script overrides the emulation passed on
the command line, so record the passed bfdname and use that in the error
message about incompatible input files.
This prevents confusing error messages. For example, if you explicitly
pass `-m elf_x86_64` to LLD but accidentally include a linker script
which sets `OUTPUT_FORMAT(elf32-i386)`, LLD would previously complain
about your input files being compatible with elf_x86_64, which isn't the
actual issue, and is confusing because the input files are in fact
x86-64 ELF files.
Interestingly enough, this also prevents a segfault! When we don't pass
`-m` and we have an object file which is incompatible with the
`OUTPUT_FORMAT` set by a linker script, the object file is checked for
compatibility before it's added to the objectFiles vector.
config->emulation, objectFiles, and sharedFiles will all be empty, so
we'll attempt to access bitcodeFiles[0], but bitcodeFiles is also empty,
so we'll segfault. This commit prevents the segfault by adding
OUTPUT_FORMAT as a possible source of machine configuration, and it also
adds an llvm_unreachable to diagnose similar issues in the future.
Differential Revision: https://reviews.llvm.org/D76109
llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
Though it is not used in all places.
I need that patch for implementing "Remove obsolete debug info" feature
(D74169). But this caching mechanism is useful by itself, and I think it
would be good to use it without connection to "Remove obsolete debug info"
feature. So this patch changes inplace creation of DWARFContext with
its cached version.
Depends on D74308
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D74773
* Delete boilerplate
* Change functions to return `Error`
* Test parsing errors
* Update callers of ARMAttributeParser::parse() to check the `Error` return value.
Since this patch touches nearly everything in the file, I apply
http://llvm.org/docs/Proposals/VariableNames.html and change variable
names to lower case.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D75015
Summary:
LLD has workaround for the times when SectionIndex was not passed properly:
LT->getFileLineInfoForAddress(
S->getOffsetInFile() + Offset, nullptr,
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info));
S->getOffsetInFile() was added to differentiate offsets between
various sections. Now SectionIndex is properly specified.
Thus it is not necessary to use getOffsetInFile() workaround.
See https://reviews.llvm.org/D58194, https://reviews.llvm.org/D58357.
This patch removes getOffsetInFile() workaround.
Reviewers: ruiu, grimar, MaskRay, espindola
Reviewed By: grimar, MaskRay
Subscribers: emaste, arichardson, llvm-commits
Tags: #llvm, #lld
Differential Revision: https://reviews.llvm.org/D75636
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
clang/gcc -fdebug-type-sections places .debug_types and
.rela.debug_types in a section group, with a signature symbol which
represents the type signature. The section group is for deduplication
purposes.
After D70146, we will discard such section groups. Refine the rule so
that we will retain the group if no member has the SHF_ALLOC flag.
GNU ld has a similar rule to retain the group if all members have the
SEC_DEBUGGING flag. We try to be more general for future-proof purposes:
if other non-SHF_ALLOC sections have deduplication needs, they may be
placed in a section group. Don't discard them.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D71157
Based on D70020 by serge-sans-paille.
The ELF spec says:
> Furthermore, there may be internal references among these sections that would not make sense if one of the sections were removed or replaced by a duplicate from another object. Therefore, such groups must be included or omitted from the linked object as a unit. A section cannot be a member of more than one group.
GNU ld has 2 behaviors that we don't have:
- Group members (nextInSectionGroup != nullptr) are subject to garbage collection.
This includes non-SHF_ALLOC SHT_NOTE sections.
In particular, discarding non-SHF_ALLOC SHT_NOTE sections is an expected behavior by the Annobin
project. See
https://developers.redhat.com/blog/2018/02/20/annobin-storing-information-binaries/
for more information.
- Groups members are retained or discarded as a unit.
Members may have internal references that are not expressed as
SHF_LINK_ORDER, relocations, etc. It seems that we should be more conservative here:
if a section is marked live, mark all the other member within the
group.
Both behaviors are reasonable. This patch implements them.
A new field InputSectionBase::nextInSectionGroup tracks the next member
within a group. on ELF64, this increases sizeof(InputSectionBase) froms
144 to 152.
InputSectionBase::dependentSections tracks section dependencies, which
is used by both --gc-sections and /DISCARD/. We can't overload it for
the "next member" semantic, because we should allow /DISCARD/ to discard
sections independent of --gc-sections (GNU ld behavior). This behavior
may be reasonably used by `/DISCARD/ : { *(.ARM.exidx*) }` or `/DISCARD/
: { *(.note*) }` (new test `linkerscript/discard-group.s`).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D70146
Fix PR43767
In -r mode, when processing a SHT_REL[A] that relocates a SHF_MERGE, sec->getRelocatedSection() is a
MergeInputSection and its parent is an OutputSection but is asserted to
be a SyntheticSection (MergeSyntheticSection) in LinkerScript.cpp:addInputSec().
##
The code path is not exercised in non -r mode because the relocated
section changed from MergeInputSection to InputSection.
Reorder the code to make the non -r logic apply to -r as well, thus fix
the crash.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D69364
This makes it clear `ELF/**/*.cpp` files define things in the `lld::elf`
namespace and simplifies `elf::foo` to `foo`.
Reviewed By: atanasyan, grimar, ruiu
Differential Revision: https://reviews.llvm.org/D68323
llvm-svn: 373885
D64136 and D65584, while fixing STB_WEAK issues and improving our
compatibility with ld.bfd, can cause another STB_WEAK problem related to
LTO:
If %tundef.o has an undefined reference on f,
and %tweakundef.o has a weak undefined reference on f,
%tdef.o has a definition of f
```
ld.lld %tundef.o %tweakundef.o --start-lib %tdef.o --end-lib
```
1) `%tundef.o` doesn't set the `referenced` bit.
2) `%weakundef.o` changes the binding from STB_GLOBAL to STB_WEAK
3) `%tdef.o` is not fetched because the binding is weak.
Step (1) is incorrect. This patch sets the `referenced` bit of Undefined
created by bitcode files.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D66992
llvm-svn: 370437
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368936
This is a case missed by D64136. If %t1.o has a weak reference on foo,
and %t2.so has a non-weak reference on foo:
```
0. ld.lld %t1.o %t2.so # ok; STB_WEAK; accepted since D64136
1. ld.lld %t2.so %t1.o # undefined symbol: foo; STB_GLOBAL
2. gold %t1.o %t2.so # ok; STB_WEAK
3. gold %t2.so %t1.o # undefined reference to 'foo'; STB_GLOBAL
4. ld.bfd %t1.o %t2.so # undefined reference to `foo'; STB_WEAK
5. ld.bfd %t2.so %t1.o # undefined reference to `foo'; STB_WEAK
```
It can be argued that in both cases, the binding of the undefined foo
should be set to STB_WEAK, because the binding should not be affected by
referenced from shared objects.
--allow-shlib-undefined doesn't suppress errors (3,4,5), but -shared or
--noinhibit-exec allows ld.bfd/gold to produce a binary:
```
3. gold -shared %t2.so %t1.o # ok; STB_GLOBAL
4. ld.bfd -shared %t2.so %t1.o # ok; STB_WEAK
5. ld.bfd -shared %t1.o %t1.o # ok; STB_WEAK
```
If %t2.so has DT_NEEDED entries, ld.bfd will load them (lld/gold don't
have the behavior). If one of the DSO defines foo and it is in the
link-time search path (e.g. DT_NEEDED entry is an absolute path, via
-rpath=, via -rpath-link=, etc),
`ld.bfd %t1.o %t2.so` and `ld.bfd %t1.o %t2.so` will not error.
In this patch, we make Undefined and SharedSymbol share the same binding
computing logic. Case 1 will be allowed:
```
0. ld.lld %t1.o %t2.so # ok; STB_WEAK; accepted since D64136
1. ld.lld %t2.so %t1.o # ok; STB_WEAK; changed by this patch
```
In the future, we can explore the option that turns both (0,1) into
errors if --no-allow-shlib-undefined (default when linking an
executable) is in action.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D65584
llvm-svn: 368038
This ports r366573 from COFF to ELF.
There are now to toString(Archive::Symbol), one doing MSVC demangling
in COFF and one doing Itanium demangling in ELF, so rename these two
to toCOFFString() and to toELFString() to not get a duplicate symbol.
Nothing ever passes a raw Archive::Symbol to CHECK(), so these not
being part of the normal toString() machinery seems ok.
There are two code paths in the ELF linker that emits this type of
diagnostic:
1. The "normal" one in InputFiles.cpp. This is covered by the tweaked test.
2. An additional one that's only used for libcalls if there's at least
one bitcode in the link, and if the libcall symbol is lazy, and
lazily loaded from an archive (i.e. not from a lazy .o file).
(This code path was added in r339301.) Since all libcall names so far
are C symbols and never mangled, the change there is not observable
and hence not covered by tests.
Differential Revision: https://reviews.llvm.org/D65095
llvm-svn: 366836
It's possible to create IR that uses !associated to refer to a global that
appears later in the module, which can result in these types of forward
references being generated. Unfortunately our assembler does not currently
accept the resulting .s so I needed to use yaml2obj to test this.
Differential Revision: https://reviews.llvm.org/D64880
llvm-svn: 366460