Shadow stack solution introduces a new stack for return addresses only.
The HW has a Shadow Stack Pointer (SSP) that points to the next return address.
If we return to a different address, an exception is triggered.
The shadow stack is managed using a series of intrinsics that are introduced in this patch as well as the new register (SSP).
The intrinsics are mapped to new instruction set that implements CET mechanism.
The patch also includes initial infrastructure support for IBT.
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
Differential Revision: https://reviews.llvm.org/D40223
Change-Id: I4daa1f27e88176be79a4ac3b4cd26a459e88fed4
llvm-svn: 318996
Summary:
This adds a new fast gather feature bit to cover all CPUs that support fast gather that we can use independent of whether the AVX512 feature is enabled. I'm only using this new bit to qualify AVX2 codegen. AVX512 is still implicitly assuming fast gather to keep tests working and to match the scatter behavior.
Test command lines have been added for these two cases.
Reviewers: magabari, delena, RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40282
llvm-svn: 318983
This is based on table 1-1 of the October 2017 revision of Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
llvm-svn: 318799
The EVEX to VEX pass is already assuming this is true under AVX512VL. We had special patterns to use zmm instructions if VLX and F16C weren't available.
Instead just make AVX512 imply F16C to make the EVEX to VEX behavior explicitly legal and remove the extra patterns.
All known CPUs with AVX512 have F16C so this should safe for now.
llvm-svn: 317521
Previously our VEX patterns were checking Subtarget.hasFMA() which checked FMA || AVX512. So we were behaving as if AVX512 implied it anyway. Which means we'd allow VEX encoded 128/256 FMA when AVX512F was enabled but AVX512VL is off. Regardless of the FMA flag.
EVEX to VEX also transforms scalar EVEX FMA instructions to their VEX versions even without the FMA flag. Similarly for 128/256 under AVX512VL.
So this makes AVX512 imply FeatureFMA to make our current behavior explicit.
All known CPUs that support AVX512 have VEX FMA instructions.
llvm-svn: 317520
As indicated by Table 1-1 in Intel Architecture Instruction Set Extensions and Future Features Programming Reference from October 2017.
llvm-svn: 316592
Adding the scheduling information for the Browadwell (BDW) CPU target.
This patch adds the instruction scheduling information for the Broadwell (BDW) architecture target by adding the file X86SchedBroadwell.td located under the X86 Target.
We used the scheduling information retrieved from the Broadwell architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each BDW instruction.
The patch continues the scheduling replacement and insertion effort started with the SandyBridge (SNB) target in r310792, the Haswell (HSW) target in r311879, the SkylakeClient (SKL) target in rL313613 + rL315978 and the SkylakeServer (SKX) in rL315175.
Performance fluctuations may be expected due to code alignment effects.
Reviewers: zvi, RKSimon, craig.topper
Differential Revision: https://reviews.llvm.org/D39054
Change-Id: If6f799e5ff60e1091c8d43b05ea78c53581bae01
llvm-svn: 316492
Turns out we have no patterns on the instructions that were using this feature flag for other reasons. These instructions are slow on all modern CPUs so it seems unlikely that we will spend any effort supporting these instructions going forward. So we might as well just kill of the feature flag and just fix up the comments.
llvm-svn: 315862
Summary: I see nothing in Agner Fog's tables to indicate that this improved between Ivy Bridge and Haswell. It's also set for all Atom CPUs so I assume KNL should have it too.
Reviewers: RKSimon, zvi, gadi.haber
Reviewed By: gadi.haber
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38890
llvm-svn: 315859
This adds Intel's Knights Mill CPU to valid CPU names for the backend. For now its an alias of "knl", but ultimately we need to support AVX5124FMAPS and AVX5124VNNIW instruction sets for it.
Differential Revision: https://reviews.llvm.org/D38811
llvm-svn: 315722
Adding the scheduling information for the SkylakeServer (SKX) target.
This patch adds the instruction scheduling information for the SkylakeServer (SKX) architecture target by adding the file X86SchedSkylakeServer.td located under the X86 Target.
We used the scheduling information retrieved from the Skylake architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each SKL instruction.
The patch continues the scheduling replacement and insertion effort started with the SNB target in r310792, the HSW target in r311879 and the SkylakeClient (SKL) target in rL313613.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: zvi, RKSimon, craig.topper, chandlerc, aymanmu
Differential Revision: https://reviews.llvm.org/D38443
Change-Id: I5c228fcc09e9e5a99b6116e62b356c4f9b971185
llvm-svn: 315175
This patch adds the instruction scheduling information for the SkylakeClient (SKL) architecture target by adding the file X86SchedSkylakeClient.td located under the X86 Target.
We used the scheduling information retrieved from the Skylake architects in order to create the file.
The scheduling information includes latency, number of micro-Ops and used ports by each SKL instruction.
The patch continues the scheduling replacement and insertion effort started with the SNB target in r307529 and r310792 and for HSW in r311879.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: craig.topper, zvi, chandlerc, igorb, aymanmus, RKSimon, delena
Differential Revision: https://reviews.llvm.org/D37294
llvm-svn: 313613
Adding x86 Processor families to initialize several uArch properties (based on the family)
This patch shows how gather cost can be initialized based on the proc. family
Differential Revision: https://reviews.llvm.org/D35348
llvm-svn: 313132
Currently we start applying this on Haswell and newer. I don't believe anything changed in the Haswell architecture to make this the right cutoff point. The partial flag handling around this has been roughly the same since Sandybridge.
Differential Revision: https://reviews.llvm.org/D37250
llvm-svn: 312099
Summary:
Currently we determine if macro fusion is supported based on the AVX flag as a proxy for the processor being Sandy Bridge".
This is really strange as now AMD supports AVX. It also means if user explicitly disables AVX we disable macro fusion.
This patch adds an explicit macro fusion feature. I've also enabled for the generic 64-bit CPU (which doesn't have AVX)
This is probably another candidate for being in the MI layer, but for now I at least wanted to correct the overloading of the AVX feature.
Reviewers: spatel, chandlerc, RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37280
llvm-svn: 312097
Summary: Knights Landing, because it is Atom derived, has slow two memory operand instructions. Mark the Knights Landing CPU model accordingly.
Patch by David Zarzycki.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37224
llvm-svn: 311979
FeatureSlowUAMem32.
The idea was to mark things that are slow on widely available processors
as slow in the generic CPU so that the code generated for that CPU would
be fast across those processors. However, for this feature that doesn't
work out very well at all.
The problem here is that you can very easily enable AVX or AVX2 on top
of this generic CPU. For example, this can happen just by using AVX2
intrinsics from Clang within a region of code guarded by a dynamic CPU
feature test. When you do that, the generated code with SlowUAMem32 set
is ... amazingly slower. The problem is that there really aren't very
good alternatives to the unaligned loads, and so our vector codegen
regresses significantly.
The other issue is that there are plenty of AMD CPUs with AVX1 that
don't set FeatureSlowUAMem32 and so we shouldn't just check for AVX2
instead of this special feature. =/
It would be nice to have the target attriute logic be able to
enable/disable more than just one feature at a time and control this in
a more fine grained and useful way, but that doesn't seem easy. Given
that it is only Sandybridge and Ivybridge that set this feature, for now
I'm just backing it out of the generic CPU. That has the additional
advantage of going back to the previous state that people seemed vaguely
happy with.
llvm-svn: 311740
widely used processors.
This occured to me when I saw that we were generating 'inc' and 'dec'
when for Haswell and newer we shouldn't. However, there were a few "X is
slow" things that we should probably just set.
I've avoided any of the "X is fast" features because most of those would
be pretty serious regressions on processors where X isn't actually fast.
The slow things are likely to be negligible costs on processors where
these aren't slow and a significant win when they are slow.
In retrospect this seems somewhat obvious. Not sure why we didn't do
this a long time ago.
Differential Revision: https://reviews.llvm.org/D36947
llvm-svn: 311318
Summary:
This patch adds the following
1. Adds a skeleton scheduler model for AMD Znver1.
2. Introduces the znver1 execution units and pipes.
3. Caters the instructions based on the generic scheduler classes.
4. Further additions to the scheduler model with instruction itineraries will be carried out incrementally based on
a. Instructions types
b. Registers used
5. Since itineraries are not added based on instructions, throughput information are bound to change when incremental changes are added.
6. Scheduler testcases are modified accordingly to suit the new model.
Patch by Ganesh Gopalasubramanian. With minor formatting tweaks from me.
Reviewers: craig.topper, RKSimon
Subscribers: javed.absar, shivaram, ddibyend, vprasad
Differential Revision: https://reviews.llvm.org/D35293
llvm-svn: 308411
Summary: I believe this should be supported on GLM since RDSEED is.
Reviewers: m_zuckerman, zvi, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34828
llvm-svn: 307060
AVX512_VPOPCNTDQ is a new feature set that was published by Intel.
The patch represents the LLVM side of the addition of two new intrinsic based instructions (vpopcntd and vpopcntq).
Differential Revision: https://reviews.llvm.org/D33169
llvm-svn: 303858
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303333
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303183
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Reapplied - this time without changing line endings of existing files.
Differential Revision: https://reviews.llvm.org/D32769
llvm-svn: 302041
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Differential Revision: https://reviews.llvm.org/D32769
llvm-svn: 302028
when the subtarget has fast strings.
This has two advantages:
- Speed is improved. For example, on Haswell thoughput improvements increase
linearly with size from 256 to 512 bytes, after which they plateau:
(e.g. 1% for 260 bytes, 25% for 400 bytes, 40% for 508 bytes).
- Code is much smaller (no need to handle boundaries).
llvm-svn: 300957
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
Summary:
Sandy Bridge and later CPUs have better throughput using a SHLD to implement rotate versus the normal rotate instructions. Additionally it saves one uop and avoids a partial flag update dependency.
This patch implements this change on any Sandy Bridge or later processor without BMI2 instructions. With BMI2 we will use RORX as we currently do.
Reviewers: zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30181
llvm-svn: 295697
We only implemented it for one of the 3 HLE instructions and that instruction is also under the RTM flag. Clang only implements the RTM flag from its command line.
llvm-svn: 294562