Move InstructionLLVM out of DisassemblerLLVM class.
Add instruction emulation function calls to SBInstruction and SBInstructionList APIs.
llvm-svn: 128956
GDBRemoteCommunicationServer classes. This involved adding a new packet
named "qSpeedTest" which can test the speed of a packet send/response pairs
using a wide variety of send/recv packet sizes.
Added a few new connection classes: one for shared memory, and one for using
mach messages (Apple only). The mach message stuff is experimental and not
working yet, but added so I don't lose the code. The shared memory stuff
uses pretty standard calls to setup shared memory.
llvm-svn: 128837
lldb::SymbolType SBSymbol::GetType();
lldb::SectionType SBAddress::GetSectionType ();
lldb::SBModule SBAddress::GetModule ();
Also add an lldb::SBModule::GetUUIDString() API which is easier for Python
to work with in the test script.
llvm-svn: 128695
event.
Modified the ProcessInfo structure to contain all process arguments. Using the
new function calls on MacOSX allows us to see the full process name, not just
the first 16 characters.
Added a new platform command: "platform process info <pid> [<pid> <pid> ...]"
that can be used to get detailed information for a process including all
arguments, user and group info and more.
llvm-svn: 128694
const data, etc, and also for SBAddress objects to classify their type of
section they are in and also getting the module for a section offset address.
lldb::SymbolType SBSymbol::GetType();
lldb::SectionType SBAddress::GetSectionType ();
lldb::SBModule SBAddress::GetModule ();
llvm-svn: 128602
class now implements the Host functionality for a lot of things that make
sense by default so that subclasses can check:
int
PlatformSubclass::Foo ()
{
if (IsHost())
return Platform::Foo (); // Let the platform base class do the host specific stuff
// Platform subclass specific code...
int result = ...
return result;
}
Added new functions to the platform:
virtual const char *Platform::GetUserName (uint32_t uid);
virtual const char *Platform::GetGroupName (uint32_t gid);
The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.
Added the parent process ID to the ProcessInfo class.
Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value,
euid == value, egid == value, arch == value, parent == value.
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class
implements the process lookup routines, you can now lists processes on
your local machine:
machine1.foo.com % lldb
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode
92742 92710 username usergroup username usergroup i386-apple-darwin debugserver
This of course also works remotely with the lldb-platform:
machine1.foo.com % lldb-platform --listen 1234
machine2.foo.com % lldb
(lldb) platform create remote-macosx
Platform: remote-macosx
Connected: no
(lldb) platform connect connect://localhost:1444
Platform: remote-macosx
Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
Hostname: machine1.foo.com
Connected: yes
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation
99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.
Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:
% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out
Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.
Modified the disassembly to show the current PC value. Example output:
(lldb) disassemble --frame
a.out`main:
0x1eb7: pushl %ebp
0x1eb8: movl %esp, %ebp
0x1eba: pushl %ebx
0x1ebb: subl $20, %esp
0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18
0x1ec3: popl %ebx
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
0x1edb: leal 213(%ebx), %eax
0x1ee1: movl %eax, (%esp)
0x1ee4: calll 0x1f1e ; puts
0x1ee9: calll 0x1f0c ; getchar
0x1eee: movl $20, (%esp)
0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6
0x1efa: movl $12, %eax
0x1eff: addl $20, %esp
0x1f02: popl %ebx
0x1f03: leave
0x1f04: ret
This can be handy when dealing with the new --line options that was recently
added:
(lldb) disassemble --line
a.out`main + 13 at test.c:19
18 {
-> 19 printf("Process: %i\n\n", getpid());
20 puts("Press any key to continue..."); getchar();
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.
Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two
following functions to retrieve both paths:
const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;
llvm-svn: 128563
Allow subclasses of UnixSignals to access m_signals by marking the member
protected instead of private. This enables a subclass to provide a default
signal set as appropriate on construction.
llvm-svn: 128544
an architecture into ArchSpec:
uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const;
uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const;
Added an AddressClass to the Instruction class in Disassembler.h.
This allows decoded instructions to know know if they are code,
code with alternate ISA (thumb), or even data which can be mixed
into code. The instruction does have an address, but it is a good
idea to cache this value so we don't have to look it up more than
once.
Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't
getting set.
Changed:
bool
SymbolContextList::AppendIfUnique (const SymbolContext& sc);
To:
bool
SymbolContextList::AppendIfUnique (const SymbolContext& sc,
bool merge_symbol_into_function);
This function was typically being used when looking up functions
and symbols. Now if you lookup a function, then find the symbol,
they can be merged into the same symbol context and not cause
multiple symbol contexts to appear in a symbol context list that
describes the same function.
Fixed the SymbolContext not equal operator which was causing mixed
mode disassembly to not work ("disassembler --mixed --name main").
Modified the disassembler classes to know about the fact we know,
for a given architecture, what the min and max opcode byte sizes
are. The InstructionList class was modified to return the max
opcode byte size for all of the instructions in its list.
These two fixes means when disassemble a list of instructions and dump
them and show the opcode bytes, we can format the output more
intelligently when showing opcode bytes. This affects any architectures
that have varying opcode byte sizes (x86_64 and i386). Knowing the max
opcode byte size also helps us to be able to disassemble N instructions
without having to re-read data if we didn't read enough bytes.
Added the ability to set the architecture for the disassemble command.
This means you can easily cross disassemble data for any supported
architecture. I also added the ability to specify "thumb" as an
architecture so that we can force disassembly into thumb mode when
needed. In GDB this was done using a hack of specifying an odd
address when disassembling. I don't want to repeat this hack in LLDB,
so the auto detection between ARM and thumb is failing, just specify
thumb when disassembling:
(lldb) disassemble --arch thumb --name main
You can also have data in say an x86_64 file executable and disassemble
data as any other supported architecture:
% lldb a.out
Current executable set to 'a.out' (x86_64).
(lldb) b main
(lldb) run
(lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes
0x100001080: 0xb580 push {r7, lr}
0x100001082: 0xaf00 add r7, sp, #0
Fixed Target::ReadMemory(...) to be able to deal with Address argument object
that isn't section offset. When an address object was supplied that was
out on the heap or stack, target read memory would fail. Disassembly uses
Target::ReadMemory(...), and the example above where we disassembler thumb
opcodes in an x86 binary was failing do to this bug.
llvm-svn: 128347
plugin by name on the command line for when there is more than one disassembler
plugin.
Taught the Opcode class to dump itself so that "disassembler -b" will dump
the bytes correctly for each opcode type. Modified all places that were passing
the opcode bytes buffer in so that the bytes could be displayed to just pass
in a bool that indicates if we should dump the opcode bytes since the opcode
now lives inside llvm_private::Instruction.
llvm-svn: 128290
Modified the Disassembler::Instruction base class to contain an Opcode
instance so that we can know the bytes for an instruction without needing
to keep the data around.
Modified the DisassemblerLLVM's instruction class to correctly extract the
opcode bytes if all goes well.
llvm-svn: 128248
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
On Mac OS X we now have 3 platforms:
PlatformDarwin - must be subclassed to fill in the missing pure virtual funcs
but this implements all the common functionality between
remote-macosx and remote-ios. It also allows for another
platform to be used (remote-gdb-server for now) when doing
remote connections. Keeping this pluggable will allow for
flexibility.
PlatformMacOSX - Now implements both local and remote macosx desktop platforms.
PlatformRemoteiOS - Remote only iOS that knows how to locate SDK files in the
cached SDK locations on the host.
A new agnostic platform has been created:
PlatformRemoteGDBServer - this implements the platform using the GDB remote
protocol and uses the built in lldb_private::Host
static functions to implement many queries.
llvm-svn: 128193
platform connect <args>
platform disconnect
Each platform can decide the args they want to use for "platform connect". I
will need to add a function that gets the connect options for the current
platform as each one can have different options and argument counts.
Hooked up more functionality in the PlatformMacOSX and PlatformRemoteiOS.
Also started an platform agnostic PlatformRemoteGDBServer.cpp which can end
up being used by one or more actual platforms. It can also be specialized and
allow for platform specific commands.
llvm-svn: 128123
overlap in the SWIG integration which has now been fixed by introducing
callbacks for initializing SWIG for each language (python only right now).
There was also a breakpoint command callback that called into SWIG which has
been abtracted into a callback to avoid cross over as well.
Added a new binary: lldb-platform
This will be the start of the remote platform that will use as much of the
Host functionality to do its job so it should just work on all platforms.
It is pretty hollowed out for now, but soon it will implement a platform
using the GDB remote packets as the transport.
llvm-svn: 128053
platform status -- gets status information for the selected platform
platform create <platform-name> -- creates a new instance of a remote platform
platform list -- list all available platforms
platform select -- select a platform instance as the current platform (not working yet)
When using "platform create" it will create a remote platform and make it the
selected platform. For instances for iPhone OS debugging on Mac OS X one can
do:
(lldb) platform create remote-ios --sdk-version=4.0
Remote platform: iOS platform
SDK version: 4.0
SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0"
Not connected to a remote device.
(lldb) file ~/Documents/a.out
Current executable set to '~/Documents/a.out' (armv6).
(lldb) image list
[ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out
[ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld
[ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib
Note that this is all happening prior to running _or_ connecting to a remote
platform. Once connected to a remote platform the OS version might change which
means we will need to update our dependecies. Also once we run, we will need
to match up the actualy binaries with the actualy UUID's to files in the
SDK, or download and cache them locally.
This is just the start of the remote platforms, but this modification is the
first iteration in getting the platforms really doing something.
llvm-svn: 127934
Still need to add "in methods of a class" to the specifiers, and the ability to write the stop hooks in the Scripting language as well as in the Command Language.
llvm-svn: 127457
correct order. Previously this was tacitly implemented but not
enforced, so it was possible to accidentally do things in the wrong
order and cause problems. This fixes that problem.
llvm-svn: 127430
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
Add new instruction context for RFE instruction.
Add several new helper functions to help emulate RFE instruction
(including CurrentModeIsPrivileged, BadMode, and CPSRWriteByInstr).
llvm-svn: 126965
and symbols, and also allow clients to get the prologue size in bytes:
SBAddress
SBFunction::GetStartAddress ();
SBAddress
SBFunction::GetEndAddress ();
uint32_t
SBFunction::GetPrologueByteSize ();
SBAddress
SBSymbol::GetStartAddress ();
SBAddress
SBSymbol::GetEndAddress ();
uint32_t
SBSymbol::GetPrologueByteSize ();
llvm-svn: 126892
anything in a SBSymbolContext filled in given an SBAddress:
SBSymbolContext
SBTarget::ResolveSymbolContextForAddress (const SBAddress& addr, uint32_t resolve_scope);
Also did a little cleanup on the ProcessGDBRemote stdio file handle
code.
llvm-svn: 126885
among other SBProcess APIs, to write (int)256 into a memory location of a global variable
(int)my_int and reads/checks the variable afterwards.
llvm-svn: 126792
Modifed lldb_private::Process to be able to handle connecting to a remote
target that isn't running a process. This leaves lldb_private::Process in the
eStateConnected state from which we can then do an attach or launch.
Modified ProcessGDBRemote to be able to set stdin, stdout, stderr, working
dir, disable ASLR and a few other settings down by using new GDB remote
packets. This allows us to keep all of our current launch flags and settings
intact and still be able to communicate them over to the remote GDB server.
Previously these were being sent as arguments to the debugserver binary that
we were spawning. Also modified ProcessGDBRemote to handle losing connection
to the remote GDB server and always exit immediately. We do this by watching
the lldb_private::Communication event bit for the read thread exiting in the
ProcessGDBRemote async thread.
Added support for many of the new 'Q' packets for setting stdin, stdout,
stderr, working dir and disable ASLR to the GDBRemoteCommunication class for
easy accesss.
Modified debugserver for all of the new 'Q' packets and also made it so that
debugserver always exists if it loses connection with the remote debugger.
llvm-svn: 126444
The major issue this patch solves is that ArchSpec::SetTriple no longer depends
on the implementation of Host::GetArchitecture. On linux, Host::GetArchitecture
calls ArchSpec::SetTriple, thus blowing the stack.
A second smaller point is that SetTriple now defaults to Host defined components
iff all OS, vendor and environment fields are not set.
llvm-svn: 126403
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
N streams by making the stream a vector of stream shared pointers
that is protected by a mutex. Streams can be get/set by index which
allows indexes to be defined as stream indentifiers. If a stream is
set at index 3 and there are now streams in the collection, then
empty stream objects are inserted to ensure that stream at index 3
has a valid stream. There is also an append method that allows a stream
to be pushed onto the stack. This will allow our streams to be very
flexible in where the output goes.
Modified the CommandReturnObject to use the new StreamTee functionality.
This class now defines two StreamTee indexes: 0 for the stream string
stream, and 1 for the immediate stream. This is used both on the output
and error streams.
Added the ability to get argument types as strings or as descriptions.
This is exported through the SBCommandInterpreter API to allow external
access.
Modified the Driver class to use the newly exported argument names from
SBCommandInterpreter::GetArgumentTypeAsCString().
llvm-svn: 126067
a Stream, and then added GetOutputData & GetErrorData to get the accumulated data.
- Added a StreamTee that will tee output to two provided lldb::StreamSP's.
- Made the CommandObjectReturn use this so you can Tee the results immediately to
the debuggers output file, as well as saving up the results to return when the command
is done executing.
- HandleCommands now uses this so that if you have a set of commands that continue the target
you will see the commands come out as they are processed.
- The Driver now uses this to output the command results as you go, which makes the interface
more reactive seeming.
llvm-svn: 126015
Targets can now specify some additional parameters for when we debug
executables that can help with plug-in selection:
target.execution-level = auto | user | kernel
target.execution-mode = auto | dynamic | static
target.execution-os-type = auto | none | halted | live
On some systems, the binaries that are created are the same wether you use
them to debug a kernel, or a user space program. Many times inspecting an
object file can reveal what an executable should be. For these cases we can
now be a little more complete by specifying wether to detect all of these
things automatically (inspect the main executable file and select a plug-in
accordingly), or manually to force the selection of certain plug-ins.
To do this we now allow the specficifation of wether one is debugging a user
space program (target.execution-level = user) or a kernel program
(target.execution-level = kernel).
We can also specify if we want to debug a program where shared libraries
are dynamically loaded using a DynamicLoader plug-in
(target.execution-mode = dynamic), or wether we will treat all symbol files
as already linked at the correct address (target.execution-mode = static).
We can also specify if the inferior we are debugging is being debugged on
a bare board (target.execution-os-type = none), or debugging an OS where
we have a JTAG or other direct connection to the inferior stops the entire
OS (target.execution-os-type = halted), or if we are debugging a program on
something that has live debug services (target.execution-os-type = live).
For the "target.execution-os-type = halted" mode, we will need to create
ProcessHelper plug-ins that allow us to extract the process/thread and other
OS information by reading/writing memory.
This should allow LLDB to be used for a wide variety of debugging tasks and
handle them all correctly.
llvm-svn: 125815
clang_type_t
GetClangFullType(); // Get a completely defined clang type
clang_type_t
GetClangLayoutType(); // Get a clang type that can be used for type layout
clang_type_t
GetClangForwardType(); // A type that can be completed if needed, but is more efficient.
llvm-svn: 125691
it should live and the lldb_private::Process takes care of managing the
auto pointer to the dynamic loader instance.
Also, now that the ArchSpec contains the target triple, we are able to
correctly set the Target architecture in DidLaunch/DidAttach in the subclasses,
and then the lldb_private::Process will find the dynamic loader plug-in
by letting the dynamic loader plug-ins inspect the arch/triple in the target.
So now the ProcessGDBRemote plug-in is another step closer to be purely
process/platform agnostic.
I updated the ProcessMacOSX and the ProcessLinux plug-ins accordingly.
llvm-svn: 125650
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
ArchDefaultUnwindPlan plug-in interfaces are now cached per architecture
instead of being leaked for every frame.
Split the ArchDefaultUnwindPlan_x86 into ArchDefaultUnwindPlan_x86_64 and
ArchDefaultUnwindPlan_i386 interfaces.
There were sporadic crashes that were due to something leaking or being
destroyed when doing stack crawls. This patch should clear up these issues.
llvm-svn: 125541
various types and numbers of arguments rather than trying to keep a
constant number of arguments for all the types.
- Also create a Register type within the instructions, to hold
register type and number.
- Modify EmulateInstructionArm.cpp to use the new register and context
types in all the instruction emulation functions.
- Add code to emulate the STM Arm instruction.
llvm-svn: 125528
are supported by the remote GDB target. We can also now deal with the lack of
vCont support and send packets that the remote GDB stub can use. We also error
out of the continue if LLDB tries to do something too complex when vCont isn't
supported.
llvm-svn: 125433
eContextAdjustBaseRegister, eContextRegisterStore and
eContextWriteMemoryRandomBits.
- Implement a version of WriteBits32UnknownToMemory for writing to memory.
- Modify EmulateLDM, EmulateLDMDA, EmulateLDMDB and EmulateLDMIB to use the
eContextAdjustBaseRegister context when appropriate.
- Add code to emulate the STM/STMIA/STMEA Arm instruction.
llvm-svn: 125414
Add new utility function, WriteBits32Unknown
Modify the LDM* instruction emulation functions to call WriteBits32Unknown.
Add missing overview comments to the LDM* instruction emulation functions.
Add code to emulate LDMDA Arm instruction.
llvm-svn: 125377
module's AST context. Prior to this fix, with gcc binaries, we end up with
a full class definition for any used classes in each compile unit due to the
one definition rule. This would result in us making N copies of class T, where
N is the number of compile units that use class T, in the module AST. When
an expression would then try and use any types that were duplicated, it would
quickly confuse clang and make expression evaluation fail due to all of the
duplicate types that got copied over. This is now fixed by making a map of
types in the DWARF that maps type names to a collection of types + declaration
(file + line number) + DIE. Then later when we find a type we look in this
module map and find any already cached types that we can just use.
8935777
llvm-svn: 125207
the lldb/source/Host/*.cpp and lldb/source/Host/*/*.cpp directories. The only
offenders are the command completion and the StreamFile.cpp.
I will soon modify StreamFile.cpp to use a lldb/source/Host/File.cpp so that
all file open, close, read, write, seek, are abstracted into the host layer
as well, then this will be gone.
llvm-svn: 125082
in the DWARF + debug map symbol file parser.
Also cleaned up the "image lookup --address ADDR" output when we it results
in something that is in an inlined function. Now we correctly dump out the
full inlined call stack.
llvm-svn: 125072
flags such that symbols can be searched for within a shared library if desired.
Platforms that support the RTLD_FIRST flag can still take advantage of their
quicker lookups, and other platforms can still get the same fucntionality
with a little extra work.
Also changed LLDB_CONFIG flags over to either being defined, or not being
defined to stay in line with current open source practices and to prepare for
using autoconf or cmake to configure LLDB builds.
llvm-svn: 125064
where the implementation is hidden in the host layer. This avoids
a slew of "#if LLDB_CONFIG_TERMIOS_SUPPORTED" statements in the
code and keeps things cleaner.
llvm-svn: 125057
#include "lldb/Host/Config.h"
Or the LLDB_CONFIG_TERMIOS_SUPPORTED defined won't be set. I will fix all
of this Termios stuff later today by moving lldb/Core/TTYState.* into the
host layer and then we conditionalize all of this inside TTYState.cpp and
then we get rid of LLDB_CONFIG_TERMIOS_SUPPORTED all together.
Typically, when we start to see too many "#if LLDB_CONFIG_XXXX" preprocessor
directives, this is a good indicator that something needs to be moved over to
the host layer. TTYState can be modified to do all of the things that many
areas of the code are currently doing, and it will avoid all of the
preprocessor noise.
llvm-svn: 125027
Internal use means for compiling the LLDB debug engine and plug-ins, but it
should never make it into the public API.
Since we don't currently have a configuration script that detects avaiable
functionality in the LLDB build system, we are hard coding #define values
in the host specific "Config.h" files.
#define values in these Config.h header files should set the value to zero or
one:
#define LLDB_CONFIG_TERMIOS_SUPPORTED 1
#define LLDB_CONFIG_OTHER 0
Then any code in the LLDB engine should check the availability using:
#if LLDB_CONFIG_TERMIOS_SUPPORTED
....
#endif
Eventually the contents of the host specific Config.h files will be auto
generated, but for now they will be hard coded. Any LLDB_CONFIG_XXXX items
that are added should be added to all Config.h files and set to either zero
or one.
llvm-svn: 124892
One (stepout.patch) to fix a problem in ThreadPlanStepOut.cpp. There is an erroneous semi colon at end of an if statement that make the condition useless (if body is empty).
And the second patch is to remove to useless typedef on enum, and so avoid a lot of warnings with clang++.
llvm-svn: 124874
(lldb) process connect <remote-url>
Currently when you specify a file with the file command it helps us to find
a process plug-in that is suitable for debugging. If you specify a file you
can rely upon this to find the correct debugger plug-in:
% lldb a.out
Current executable set to 'a.out' (x86_64).
(lldb) process connect connect://localhost:2345
...
If you don't specify a file, you will need to specify the plug-in name that
you wish to use:
% lldb
(lldb) process connect --plugin process.gdb-remote connect://localhost:2345
Other connection URL examples:
(lldb) process connect connect://localhost:2345
(lldb) process connect tcp://127.0.0.1
(lldb) process connect file:///dev/ttyS1
We are currently treating the "connect://host:port" as a way to do raw socket
connections. If there is a URL for this already, please let me know and we
will adopt it.
So now you can connect to a remote debug server with the ProcessGDBRemote
plug-in. After connection, it will ask for the pid info using the "qC" packet
and if it responds with a valid process ID, it will be equivalent to attaching.
If it response with an error or invalid process ID, the LLDB process will be
in a new state: eStateConnected. This allows us to then download a program or
specify the program to run (using the 'A' packet), or specify a process to
attach to (using the "vAttach" packets), or query info about the processes
that might be available.
llvm-svn: 124846
condition that could occur when launching or attaching. What could happen is
you would launch/attach to a process, then you would need to tell a listener
to watch for process state changed events. In this case, if you waited too
long to listen for events, you could miss the initial stop event, requiring
clients to listen, then check the process state.
llvm-svn: 124818
LLDB plugin directory and a user LLDB plugin directory. We currently still
need to work out at what layer the plug-ins will be, but at least we are
prepared for plug-ins. Plug-ins will attempt to be loaded from the
"/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Plugins"
folder, and from the "~/Library/Application Support/LLDB/Plugins" folder on
MacOSX. Each plugin will be scanned for:
extern "C" bool LLDBPluginInitialize(void);
extern "C" void LLDBPluginTerminate(void);
If at least LLDBPluginInitialize is found, the plug-in will be loaded. The
LLDBPluginInitialize function returns a bool that indicates if the plug-in
should stay loaded or not (plug-ins might check the current OS, current
hardware, or anything else and determine they don't want to run on the current
host). The plug-in is uniqued by path and added to a static loaded plug-in
map. The plug-in scanning happens during "lldb_private::Initialize()" which
calls to the PluginManager::Initialize() function. Likewise with termination
lldb_private::Terminate() calls PluginManager::Terminate(). The paths for the
plug-in directories is fetched through new Host calls:
bool Host::GetLLDBPath (ePathTypeLLDBSystemPlugins, dir_spec);
bool Host::GetLLDBPath (ePathTypeLLDBUserPlugins, dir_spec);
This way linux and other systems can define their own appropriate locations
for plug-ins to be loaded.
To allow dynamic shared library loading, the Host layer has also been modified
to include shared library open, close and get symbol:
static void *
Host::DynamicLibraryOpen (const FileSpec &file_spec,
Error &error);
static Error
Host::DynamicLibraryClose (void *dynamic_library_handle);
static void *
Host::DynamicLibraryGetSymbol (void *dynamic_library_handle,
const char *symbol_name,
Error &error);
lldb_private::FileSpec also has been modified to support directory enumeration
in an attempt to abstract the directory enumeration into one spot in the code.
The directory enumertion function is static and takes a callback:
typedef enum EnumerateDirectoryResult
{
eEnumerateDirectoryResultNext, // Enumerate next entry in the current directory
eEnumerateDirectoryResultEnter, // Recurse into the current entry if it is a directory or symlink, or next if not
eEnumerateDirectoryResultExit, // Exit from the current directory at the current level.
eEnumerateDirectoryResultQuit // Stop directory enumerations at any level
};
typedef FileSpec::EnumerateDirectoryResult (*EnumerateDirectoryCallbackType) (void *baton,
FileSpec::FileType file_type,
const FileSpec &spec);
static FileSpec::EnumerateDirectoryResult
FileSpec::EnumerateDirectory (const char *dir_path,
bool find_directories,
bool find_files,
bool find_other,
EnumerateDirectoryCallbackType callback,
void *callback_baton);
This allow clients to specify the directory to search, and specifies if only
files, directories or other (pipe, symlink, fifo, etc) files will cause the
callback to be called. The callback also gets to return with the action that
should be performed after this directory entry. eEnumerateDirectoryResultNext
specifies to continue enumerating through a directory with the next entry.
eEnumerateDirectoryResultEnter specifies to recurse down into a directory
entry, or if the file is not a directory or symlink/alias to a directory, then
just iterate to the next entry. eEnumerateDirectoryResultExit specifies to
exit the current directory and skip any entries that might be remaining, yet
continue enumerating to the next entry in the parent directory. And finally
eEnumerateDirectoryResultQuit means to abort all directory enumerations at
all levels.
Modified the Declaration class to not include column information currently
since we don't have any compilers that currently support column based
declaration information. Columns support can be re-enabled with the
additions of a #define.
Added the ability to find an EmulateInstruction plug-in given a target triple
and optional plug-in name in the plug-in manager.
Fixed a few cases where opendir/readdir was being used, but yet not closedir
was being used. Soon these will be deprecated in favor of the new directory
enumeration call that was added to the FileSpec class.
llvm-svn: 124716
diagnostics of Clang AST classes for the purpose of
debugging the types LLDB produces for DWARF objects.
The ASTDumper is currently only used in log output
if you enable verbose mode in the expression log:
log enable -v lldb expr
Its output then appears in the log for external
variables used by the expr command.
llvm-svn: 124703
sessions: When continue packet has been sent and an interrupt packet was
quickly sent, it would get read at the same time:
$c#00\x03
There was an error where the packet end index was always being computed
incorrectly by debugserver, but it wouldn't matter if there weren't extra
bytes on the end (the hex \x03 interrupt byte in this case). The first
'$' last 3 bytes of the data in the packet buffer were being trimmed
(trying to trim the '#' + checksum (#XX)) which made:
c#
And this would then be passed to the handle routine for the 'c' packet which
would see an extra character at the end and assume it was going to be in the
form c[addr] where "[addr]" was a hex address to resume at and this would
result in a malformed packet response. This is now fixed and everything works
great.
Another issue was issuing async packets correctly by doing correct handshakes
between the thread that wants to send the async packet, and the thread that
is tracking the current run.
Added a write lock to the communication class as well to make sure you never
get two threads trying to write data at the same time. This wasn't happening,
but it is a good idea to make sure it doesn't.
llvm-svn: 124369
lldb_private::Function objects. Previously the SymbolFileSymtab subclass
would return lldb_private::Symbol objects when it was asked to find functions.
The Module::FindFunctions (...) now take a boolean "bool include_symbols" so
that the module can track down functions and symbols, yet functions are found
by the SymbolFile plug-ins (through the SymbolVendor class), and symbols are
gotten through the ObjectFile plug-ins.
Fixed and issue where the DWARF parser might run into incomplete class member
function defintions which would make clang mad when we tried to make certain
member functions with invalid number of parameters (such as an operator=
operator that had no parameters). Now we just avoid and don't complete these
incomplete functions.
llvm-svn: 124359
provision for specifying a working directory with the name LaunchWithCWD in our
target language (Python) for now. This fixes the test suite failures due to the
overloading.
llvm-svn: 124069
takes separate file handles for stdin, stdout, and stder and also allows for
the working directory to be specified.
Added support to "process launch" to a new option: --working-dir=PATH. We
can now set the working directory. If this is not set, it defaults to that
of the process that has LLDB loaded. Added the working directory to the
host LaunchInNewTerminal function to allows the current working directory
to be set in processes that are spawned in their own terminal. Also hooked this
up to the lldb_private::Process and all mac plug-ins. The linux plug-in had its
API changed, but nothing is making use of it yet. Modfied "debugserver" and
"darwin-debug" to also handle the current working directory options and modified
the code in LLDB that spawns these tools to pass the info along.
Fixed ProcessGDBRemote to properly pass along all file handles for stdin, stdout
and stderr.
After clearing the default values for the stdin/out/err file handles for
process to be NULL, we had a crasher in UserSettingsController::UpdateStringVariable
which is now fixed. Also fixed the setting of boolean values to be able to
be set as "true", "yes", "on", "1" for true (case insensitive) and "false", "no",
"off", or "0" for false.
Fixed debugserver to properly handle files for STDIN, STDOUT and STDERR that are not
already opened. Previous to this fix debugserver would only correctly open and dupe
file handles for the slave side of a pseudo terminal. It now correctly handles
getting STDIN for the inferior from a file, and spitting STDOUT and STDERR out to
files. Also made sure the file handles were correctly opened with the NOCTTY flag
for terminals.
llvm-svn: 124060
checking the validity of the shared pointer prior to using it.
Fixed the GDB remote plug-in to once again watch for a reply from the "k"
packet, and fixed the logic to make sure the thread requesting the kill
and the async thread play nice (and very quickly) by synchronizing the
packet sending and reply. I also tweaked some of the shut down packet
("k" kill, "D" detach, and the halt packet) to make sure they do the right
thing.
Fixed "StateType Process::WaitForProcessStopPrivate (...)" to correctly pass
the timeout along to WaitForStateChangedEventsPrivate() and made the function
behave correctly with respect to timing out.
Added separate STDIN, STDOUT, and STDERR support to debugserver. Also added
the start of being able to set the working directory for the inferior process.
llvm-svn: 124049
we are requesting a single thread to run. May seem like a silly thing to do, but the kernel
on MacOS X will inject new threads into a program willy-nilly, and I would like to keep them
from running if I can.
llvm-svn: 124018
select frame #3, you can then do a step out and be able to go directly to the
frame above frame #3!
Added StepOverUntil and StepOutOfFrame to the SBThread API to allow more powerful
stepping.
llvm-svn: 123970
fragile ivars if requested. This was done by changing the previous second parameter
to an options bitfield that can be populated by logical OR'ing the new
StackFrame::ExpressionPathOption enum values together:
typedef enum ExpressionPathOption
{
eExpressionPathOptionCheckPtrVsMember = (1u << 0),
eExpressionPathOptionsNoFragileObjcIvar = (1u << 1),
};
So the old function was:
lldb::ValueObjectSP
StackFrame::GetValueForVariableExpressionPath (const char *var_expr, bool check_ptr_vs_member, Error &error);
But it is now:
lldb::ValueObjectSP
StackFrame::GetValueForVariableExpressionPath (const char *var_expr, uint32_t options, Error &error);
This allows the expression parser in Target::EvaluateExpression(...) to avoid
using simple frame variable expression paths when evaluating something that might
be a fragile ivar.
llvm-svn: 123938
going to actually be used as the symbol file plug-in by looking only for suitable
N_OSO symbols and avoiding sorting function (N_FUN) and global/static (N_GSYM/N_STSYM)
symbols when there are no suitable N_OSO objects.
llvm-svn: 123889
the way LLDB lazily gets complete definitions for types within the debug info.
When we run across a class/struct/union definition in the DWARF, we will only
parse the full definition if we need to. This works fine for top level types
that are assigned directly to variables and arguments, but when we have a
variable with a class, lets say "A" for this example, that has a member:
"B *m_b". Initially we don't need to hunt down a definition for this class
unless we are ever asked to do something with it ("expr m_b->getDecl()" for
example). With my previous approach to lazy type completion, we would be able
to take a "A *a" and get a complete type for it, but we wouldn't be able to
then do an "a->m_b->getDecl()" unless we always expanded all types within a
class prior to handing out the type. Expanding everything is very costly and
it would be great if there were a better way.
A few months ago I worked with the llvm/clang folks to have the
ExternalASTSource class be able to complete classes if there weren't completed
yet:
class ExternalASTSource {
....
virtual void
CompleteType (clang::TagDecl *Tag);
virtual void
CompleteType (clang::ObjCInterfaceDecl *Class);
};
This was great, because we can now have the class that is producing the AST
(SymbolFileDWARF and SymbolFileDWARFDebugMap) sign up as external AST sources
and the object that creates the forward declaration types can now also
complete them anywhere within the clang type system.
This patch makes a few major changes:
- lldb_private::Module classes now own the AST context. Previously the TypeList
objects did.
- The DWARF parsers now sign up as an external AST sources so they can complete
types.
- All of the pure clang type system wrapper code we have in LLDB (ClangASTContext,
ClangASTType, and more) can now be iterating through children of any type,
and if a class/union/struct type (clang::RecordType or ObjC interface)
is found that is incomplete, we can ask the AST to get the definition.
- The SymbolFileDWARFDebugMap class now will create and use a single AST that
all child SymbolFileDWARF classes will share (much like what happens when
we have a complete linked DWARF for an executable).
We will need to modify some of the ClangUserExpression code to take more
advantage of this completion ability in the near future. Meanwhile we should
be better off now that we can be accessing any children of variables through
pointers and always be able to resolve the clang type if needed.
llvm-svn: 123613
Debuggers on ELF platforms hook into the runtime linker by monitoring a special
"rendezvous" embedded in the address space of the inferior process. The exact
location of this structure is filled in by the runtime linker and can be
resolved by locating the DT_DEBUG entry in the processes .dynamic section. The
new GetImageInfoAddress() method (morally equivalent to
Process::GetImageInfoAddress) provides the mechanism to locate this information.
GetEntryPoint() simply returns the address of the start symbol in the executable
if present. It is useful to the dynamic loader plugin for ELF systems as this
is the earliest point where LLDB can break and probe the inferiors .dynamic
section and rendezvous structure. Also, this address can be used in the
computation of the virtual base address for position independent executables.
llvm-svn: 123466
Anytime we had a valid python list that was trying to go from Python down into
our C++ API, it was allocating too little memory and it ended up smashing
whatever was next to the allocated memory.
Added typemap conversions for "void *, size_t" so we can get
SBProcess::ReadMemory() working. Also added a typemap for "const void *, size_t"
so we can get SBProcess::WriteMemory() to work.
Fixed an issue in the DWARF parser where we weren't correctly calculating the
DeclContext for all types and classes. We now should be a lot more accurate.
Fixes include: enums should now be setting their parent decl context correctly.
We saw a lot of examples where enums in classes were not being properly
namespace scoped. Also, classes within classes now get properly scoped.
Fixed the objective C runtime pointer checkers to let "nil" pointers through
since these are accepted by compiled code. We also now don't call "abort()"
when a pointer doesn't validate correctly since this was wreaking havoc on
the process due to the way abort() works. We now just dereference memory
which should give us an exception from which we can easily and reliably
recover.
llvm-svn: 123428
exist within the same process (one script interpreter object per debugger object). The
python script interpreter objects are all using the same global Python script interpreter;
they use separate dictionaries to keep their data separate, and mutex's to prevent any object
attempting to use the global Python interpreter when another object is already using it.
llvm-svn: 123415
by LLDB. Instead of being materialized into the input structure
passed to the expression, variables are left in place and pointers
to them are materialzied into the structure. Variables not resident
in memory (notably, registers) get temporary memory regions allocated
for them.
Persistent variables are the most complex part of this, because they
are made in various ways and there are different expectations about
their lifetime. Persistent variables now have flags indicating their
status and what the expectations for longevity are. They can be
marked as residing in target memory permanently -- this is the
default for result variables from expressions entered on the command
line and for explicitly declared persistent variables (but more on
that below). Other result variables have their memory freed.
Some major improvements resulting from this include being able to
properly take the address of variables, better and cleaner support
for functions that return references, and cleaner C++ support in
general. One problem that remains is the problem of explicitly
declared persistent variables; I have not yet implemented the code
that makes references to them into indirect references, so currently
materialization and dematerialization of these variables is broken.
llvm-svn: 123371
a method:
void RegisterContext::InvalidateIfNeeded (bool force);
Each time this function is called, when "force" is false, it will only call
the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if
the register context's stop ID doesn't match that of the process. When the
stop ID doesn't match, or "force" is true, the base class will clear its
cached registers and the RegisterContext will update its stop ID to match
that of the process. This helps make it easier to correctly flush the register
context (possibly from multiple locations depending on when and where new
registers are availabe) without inadvertently clearing the register cache
when it doesn't need to be.
Modified the ProcessGDBRemote plug-in to be much more efficient when it comes
to:
- caching the expedited registers in the stop reply packets (we were ignoring
these before and it was causing us to read at least three registers every
time we stopped that were already supplied in the stop reply packet).
- When a thread has no stop reason, don't keep asking for the thread stopped
info. Prior to this fix we would continually send a qThreadStopInfo packet
over and over when any thread stop info was requested. We now note the stop
ID that the stop info was requested for and avoid multiple requests.
Cleaned up some of the expression code to not look for ClangExpressionVariable
objects up by name since they are now shared pointers and we can just look for
the exact pointer match and avoid possible errors.
Fixed an bug in the ValueObject code that would cause children to not be
displayed.
llvm-svn: 123127
was being searched and sorted using a shared pointer as the value which means
the pointer value was what was being searched for. This means that anytime
you did a stack backtrace, the collection of FuncUnwinders doubled and then
the array or shared pointer got sorted (by pointer value), so you had an ever
increasing collection of shared pointer where a match was never found. This
means we had a ton of duplicates in this table and would cause issues after
one had been debugging for a long time.
llvm-svn: 123045
subclasses will automatically be able to take advantage of caching. The
cache line size is set to 512 by default.
This greatly speeds up stack backtraces on MacOSX when using the
ProcessGDBRemote process plug-in since only about 6300 packets per second
can be sent.
Initial speedups show:
Prior to caching: 10,000 stack frames took 5.2 seconds
After caching: 10,000 stack frames in 240 ms!
About a 20x speedup!
llvm-svn: 122996
cache even when a valid process exists. Previously, Target::ReadMemory would
read from the process if there was a valid one and then fallback to the
object file cache.
llvm-svn: 122989
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976
Fixed the display of complex numbers in lldb_private::DataExtractor::Dump(...)
and also fixed other edge display cases in lldb_private::ClangASTType::DumpTypeValue(...).
llvm-svn: 122895
a Debugger object is destroyed or re-set. (Thus making sure that, for
example, the Python interpreter finishes and exits cleanly rather than
being left in an undefined state.)
llvm-svn: 122255
table offset where the offset is within a section. Increased the section
offset for line table entries to be 32 bits (from 24 bits), giving each
section a 4G offset, and increased the section index to 32 bits (from 8 bits).
llvm-svn: 122200
a shell would interpret it. A few examples that we now handle correctly
INPUT: "Hello "world
OUTPUT: "Hello World"
INPUT: "Hello "' World'
OUTPUT: "Hello World"
INPUT: Hello" World"
OUTPUT: "Hello World"
This broke the setting of dictionary values for the "settings set" command
for things like:
(lldb) settings set target.process.env-vars ["MY_ENV_VAR"]=YES
since we would drop the quotes. I fixed the user settings controller to use
a regular expression so it can accept any of the following inputs for
dictionary setting:
settings set target.process.env-vars ["MY_ENV_VAR"]=YES
settings set target.process.env-vars [MY_ENV_VAR]=YES
settings set target.process.env-vars MY_ENV_VAR=YES
We might want to eventually drop the first two syntaxes, but I won't make
that decision right now.
This allows more natural setting of the envirorment variables:
settings set target.process.env-vars MY_ENV_VAR=YES ABC=DEF CWD=/tmp
llvm-svn: 122166
line commands can use the current thread/frame.
Fixed an issue with expressions that get sandboxed in an objective C method
where unichar wasn't being passed down.
Added a "static size_t Scalar::GetMaxByteSize();" function in case we need
to know the max supported by size of something within a Scalar object.
llvm-svn: 122027
can avoid running the code in the target if the
expression's result is known and the expression
has no side effects.
Right now this feature is quite conservative in
its guess about side effects, and it only computes
integer results, but the machinery to make it more
sophisticated is there.
llvm-svn: 121952
function and also hooked up better error reporting for when things fail.
Fixed issues with trying to display children of pointers when none are
supposed to be shown (no children for function pointers, and more like this).
This was causing child value objects to be made that were correctly firing
an assertion.
llvm-svn: 121841
SBValue SBFrame::LookupVar(const char *name);
To
SBValue SBFrame::FindVariable (const char *name);
Changed:
SBValue LookupVarInScope (const char *name, const char *scope);
to
SBValue FindValue (const char *name, ValueType value_type);
The latter makes it possible to not only find variables (params, locals, globals, and statics), but we can also now get register sets, registers and persistent variables using the frame as the context.
llvm-svn: 121777
values or persistent expression variables. Now if an expression consists of
a value that is a child of a variable, or of a persistent variable only, we
will create a value object for it and make a ValueObjectConstResult from it to
freeze the value (for program variables only, not persistent variables) and
avoid running JITed code. For everything else we still parse up and JIT code
and run it in the inferior.
There was also a lot of clean up in the expression code. I made the
ClangExpressionVariables be stored in collections of shared pointers instead
of in collections of objects. This will help stop a lot of copy constructors on
these large objects and also cleans up the code considerably. The persistent
clang expression variables were moved over to the Target to ensure they persist
across process executions.
Added the ability for lldb_private::Target objects to evaluate expressions.
We want to evaluate expressions at the target level in case we aren't running
yet, or we have just completed running. We still want to be able to access the
persistent expression variables between runs, and also evaluate constant
expressions.
Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects
can now dump their contents with the UUID, arch and full paths being logged with
appropriate prefix values.
Thread hardened the Communication class a bit by making the connection auto_ptr
member into a shared pointer member and then making a local copy of the shared
pointer in each method that uses it to make sure another thread can't nuke the
connection object while it is being used by another thread.
Added a new file to the lldb/test/load_unload test that causes the test a.out file
to link to the libd.dylib file all the time. This will allow us to test using
the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else.
llvm-svn: 121745
the code to pass the _cmd pointer has been improved, and _cmd
is now set to the value of _cmd for the current context, as
opposed to being simply NULL.
llvm-svn: 121739
access to the members of the Objective-C self object.
The approach we take is to generate the method as a
@category on top of the self object, and to pass the
"self" pointer to it. (_cmd is currently NULL.)
Most changes are in ClangExpressionDeclMap, but the
change that adds support to the ABIs to pass _cmd
touches a fair amount of code.
llvm-svn: 121722
the lldb PyThon API SBSourceManager to display source files.
To accomodate this, the C++ SBSourceManager API has been changed to take an
lldb::SBStream as the destination for display of source lines. Modify SBStream::ctor()
so that its opaque pointer is initialized with an StreamString instance.
llvm-svn: 121605
- Added new utility function to Arg, GetQuotedCommandString, which re-assembles
the args into a string, replacing quotes that were originally there.
- Modified user settings stuff to always show individual elements when printing out
arrays and dictionaries.
- Added more extensive help to 'settings set', explaining more about dictionaries
and arrays (including current dictionary syntax).
- Fixed bug in user settings where quotes were being stripped and lost, so that
sometimes array or dictionary elements that ought to have been a single element
were being split up.
llvm-svn: 121438
logic for finding the target of a method dispatch into this function, insert & call it. Gets calls to super, and all the
fixup & fixedup variants working properly. Also gets the class from the object so that we step through KVO wrapper methods
into the actual user code.
llvm-svn: 121437
not the command should take raw input, then handle & dispatch the arguments appropriately.
Also change the 'alias' command to be a command that takes raw input. This is necessary to
allow aliases to be created for other commands that take raw input and might want to include
raw input in the alias itself.
Fix a bug in the aliasing mechanism when creating aliases for commands with 3-or-more words.
Raw input should now be properly handled by all the command and alias mechanisms.
llvm-svn: 121423
file data, so if a source file was modified, we would always show the first
cached copy of the source data. We now check file modification times when
displaying source info so we can show the update source info.
llvm-svn: 121278
have children sections).
Modified SectionLoadList to do it's own multi-threaded protected on its map.
The ThreadSafeSTLMap class was difficult to deal with and wasn't providing
much utility, it was only getting in the way.
Make sure when the communication read thread is about to exit, it clears the
thread in the main class.
Fixed the ModuleList to correctly ignore architectures and UUIDs if they aren't
valid when searching for a matching module. If we specified a file with no arch,
and then modified the file and loaded it again, it would not match on subsequent
searches if the arch was invalid since it would compare an invalid architecture
to the one that was found or selected within the shared library or executable.
This was causing stale modules to stay around in the global module list when they
should have been removed.
Removed deprecated functions from the DynamicLoaderMacOSXDYLD class.
Modified "ProcessGDBRemote::IsAlive" to check if we are connected to a gdb
server and also make sure our process hasn't exited.
llvm-svn: 121236
- Add logging for command resolution ('log enable lldb commands')
- Fix alias resolution to properly handle commands that take raw input (resolve the alias, but
don't muck up the raw arguments).
Net result: Among other things, 'expr' command can now take strings with escaped characters and
not have the command handling & alias resolution code muck up the escaped characters. E.g.
'expr printf ("\n\n\tHello there!")' should now work properly.
Not working yet: Creating aliases with raw input for commands that take raw input. Working on that.
e.g. 'command alias print_hi expr printf ("\n\tHi!")' does not work yet.
llvm-svn: 121171
ModuleList so they don't show up in the images. Breakpoint locations that are
in shared libraries that get unloaded will persist though so that if you
have plug-ins that load/unload and you have a breakpoint set on functions
in the plug-ins, the hit counts will persist between loads/unloads.
llvm-svn: 121069
do. Closing on EOF is an option that can be set on the
lldb_private::Communication or the lldb::SBCommunication objects after they
are created. Of course the EOF support isn't hooked up, so they don't do
anything at the moment, but they are left in so when the code is fixed, it
will be easy to get working again.
llvm-svn: 120885
was done as an settings variable in the process for now. We will eventually
move all environment stuff over to the target, but we will leave it with the
process for now. The default setting is for a process to inherit the host
environment. This can be disabled by setting the "inherit-env" setting to
false in the process.
llvm-svn: 120862
inferior to be launched without setting up terminal stdin/stdout for it
(leaving the lldb command line accessible while the program is executing).
Also add a user settings variable, 'target.process.disable-stdio' to allow
the user to set this globally rather than having to use the command option
each time the process is launched.
llvm-svn: 120825
an error saying the resume timed out. Previously the thread that was trying
to resume the process would eventually call ProcessGDBRemote::DoResume() which
would broadcast an event over to the async GDB remote thread which would sent the
continue packet to the remote gdb server. Right after this was sent, it would
set a predicate boolean value (protected by a mutex and condition) and then the
thread that issued the ProcessGDBRemote::DoResume() would then wait for that
condition variable to be set. If the async gdb thread was too quick though, the
predicate boolean value could have been set to true and back to false by the
time the thread that issued the ProcessGDBRemote::DoResume() checks the boolean
value. So we can't use the predicate value as a handshake. I have changed the code
over to using a Event by having the GDB remote communication object post an
event:
GDBRemoteCommunication::eBroadcastBitRunPacketSent
This allows reliable handshaking between the two threads and avoids the erroneous
ProcessGDBRemote::DoResume() errors.
Added a host backtrace service to allow in process backtraces when trying to track
down tricky issues. I need to see if LLVM has any backtracing abilities abstracted
in it already, and if so, use that, but I needed something ASAP for the current issue
I was working on. The static function is:
void
Host::Backtrace (Stream &strm, uint32_t max_frames);
And it will backtrace at most "max_frames" frames for the current thread and can be
used with any of the Stream subclasses for logging.
llvm-svn: 120793
so that it is not referring to potentially stale
state during IR execution.
This was done by introducing modular state (like
ClangExpressionVariable) where groups of state
variables have well-defined lifetimes:
- m_parser_vars are specific to parsing, and only
exist between calls to WillParse() and DidParse().
- m_struct_vars survive for the entire execution
of the ClangExpressionDeclMap because they
provide the template for a materialized set of
expression variables.
- m_material_vars are specific to a single
instance of materialization, and only exist
between calls to Materialize() and
Dematerialize().
I also removed unnecessary references to long-
lived state that really didn't need to be referred
to at all, and also introduced several assert()s
that helped me diagnose a few bugs (fixed too).
llvm-svn: 120778
Add bool member to Communication class indicating whether the
Connection should be closed on receiving an EOF or not. Update the
Connection read to return an EOF status when appropriate. Modify the
Communication class to pass the EOF along or not, and to close the
Connection or not, as appropriate.
llvm-svn: 120723
in C++ methods. There were two fixes involved:
- For an object whose contents are not known, the
expression should be treated as a non-member, and
"this" should have no meaning.
- For a const object, the method should be declared
const as well.
llvm-svn: 120606
Added a ThreadPlanCallUserExpression that differs from ThreadPlanCallFunction in that it holds onto a shared pointer to its ClangUserExpression so that can't go away before the thread plan is done using it.
Fixed the stop message when you hit a breakpoint while running a user expression so it is more obvious what has happened.
llvm-svn: 120386
RegisterContext* - normally this is retrieved from the ExecutionContext's
StackFrame but when we need to evaluate an expression while creating
the stack frame list this can be a little tricky.
Add DW_OP_deref_size, needed for the _sigtramp FDE expression.
Add support for processing DWARF expressions in RegisterContextLLDB.
Update callers to DWARFExpression::Evaluate.
llvm-svn: 119885
perform recursive type lookups, because these are not
required for full type fidelity. We also make the
SelectorTable last for the full lifetime of the Clang
compiler; this was the source of many bugs.
llvm-svn: 119835
that the result of an expression should be coerced to
a specific type. Also made breakpoint conditions pass
in the bool type for this type.
The expression parser ignores this indication for now.
llvm-svn: 119779
changing it to use it. There was an extra parameter added to the static
accessor global user settings controllers that wasn't needed. A bool was being
used as a parameter to the accessor just so it could be used to clean up
the global user settings controller which is now fixed by splitting up the
initialization into the "static void Class::Initialize()", access into the
"static UserSettingsControllerSP & Class::GetSettingsController()", and
cleanup into "static void Class::Terminate()".
Also added initialize and terminate calls to the logging code to avoid issues
when LLDB is shutting down. There were cases after the logging was switched
over to use shared pointers where we could crash if the global destructor
chain was being run and it causes the log to be destroyed and any any logging
occurred.
llvm-svn: 119757
by being able to get the data count and data. Each thread stop reason
has one or more data words that can help describe the stop. To do this
I added:
size_t
SBThread::GetStopReasonDataCount();
uint64_t
SBThread::GetStopReasonDataAtIndex(uint32_t idx);
llvm-svn: 119720
to the DoHalt down in ProcessGDBRemote. I also moved the functionality that
was in ProcessGDBRemote::DoHalt up into Process::Halt so not every class has
to implement a tricky halt/resume on the internal state thread. The
functionality is the same as it was before with two changes:
- when we eat the event we now just reuse the event we consume when the private
state thread is paused and set the interrupted bool on the event if needed
- we also properly update the Process::m_public_state with the state of the
event we consume.
Prior to this, if you issued a "process halt" it would eat the event, not
update the process state, and then produce a new event with the interrupted
bit set and send it. Anyone listening to the event would get the stopped event
with a process that whose state was set to "running".
Fixed debugserver to not have to be spawned with the architecture of the
inferior process. This worked fine for launching processes, but when attaching
to processes by name or pid without a file in lldb, it would fail.
Now debugserver can support multiple architectures for a native debug session
on the current host. This currently means i386 and x86_64 are supported in
the same binary and a x86_64 debugserver can attach to a i386 executable.
This change involved a lot of changes to make sure we dynamically detect the
correct registers for the inferior process.
llvm-svn: 119680
with the Interrupted bit set. Process::HandlePrivateEvent ignores Interrupted events.
DoHalt is changed to ensure that the stop even is processed, and an event with
the Interrupted event is posted. Finally ClangFunction is rationalized to use this
facility so the that Halt is handled more deterministically.
llvm-svn: 119453
ReadThread stuff into the main Process class (out of the Process Plugins).
This has the (intended) side effect of disabling the command line tool
from reading input/commands while the process is running (the input is
directed to the running process rather than to the command interpreter).
llvm-svn: 119329
can too. So now the lldb_private::Variable class has support for this.
Variables now have support for having a basename ("i"), and a mangled name
("_ZN12_GLOBAL__N_11iE"), and a demangled name ("(anonymous namespace)::i").
Nowwhen searching for a variable by name, users might enter the fully qualified
name, or just the basename. So new test functions were added to the Variable
and Mangled classes as:
bool NameMatches (const ConstString &name);
bool NameMatches (const RegularExpression ®ex);
I also modified "ClangExpressionDeclMap::FindVariableInScope" to also search
for global variables that are not in the current file scope by first starting
with the current module, then moving on to all modules.
Fixed an issue in the DWARF parser that could cause a varaible to get parsed
more than once. Now, once we have parsed a VariableSP for a DIE, we cache
the result even if a variable wasn't made so we don't do any re-parsing. Some
DW_TAG_variable DIEs don't have locations, or are missing vital info that
stops a debugger from being able to display anything for it, we parse a NULL
variable shared pointer for these DIEs so we don't keep trying to reparse it.
llvm-svn: 119085
breakpoints on inlined functions by name. This involved fixing the DWARF parser
to correctly back up and parse the concrete function when we find inlined
functions by name, then grabbing any appropriate inlined blocks and returning
symbol contexts with the block filled in. After this was fixed, the breakpoint
by name resolver needed to correctly deal with symbol contexts that had the
inlined block filled in in the symbol contexts.
llvm-svn: 119017
expression. This currently takes waaaayyyyy too much time to evaluate. We will
need to look at the expression parser and find ways to optimize the info we
provide and get this to evaluate quicker. I believe the performance issue is
currently related to us always providing a complete C++ class type when asked
about a C++ class which can cause a lot of information to be pulled since all
classes will be fully created (methods, base classes, members, all their
types). We will need to give the classes back the parser and mark them as
having external sources and get parser (Sema) to query us when it needs more
info. This should bring things up to an acceptable level.
llvm-svn: 118979
cases when getting the clang type:
- need only a forward declaration
- need a clang type that can be used for layout (members and args/return types)
- need a full clang type
This allows us to partially parse the clang types and be as lazy as possible.
The first case is when we just need to declare a type and we will complete it
later. The forward declaration happens only for class/union/structs and enums.
The layout type allows us to resolve the full clang type _except_ if we have
any modifiers on a pointer or reference (both R and L value). In this case
when we are adding members or function args or return types, we only need to
know how the type will be laid out and we can defer completing the pointee
type until we later need it. The last type means we need a full definition for
the clang type.
Did some renaming of some enumerations to get rid of the old "DC" prefix (which
stands for DebugCore which is no longer around).
Modified the clang namespace support to be almost ready to be fed to the
expression parser. I made a new ClangNamespaceDecl class that can carry around
the AST and the namespace decl so we can copy it into the expression AST. I
modified the symbol vendor and symbol file plug-ins to use this new class.
llvm-svn: 118976
needs to use the current pc and current offset in two ways: To
determine which function we are currently executing, and the decide
how much of that function has executed so far. For the former use,
we need to back up the saved pc value by one byte if we're going to
use the correct function's unwind information -- we may be executing
a CALL instruction at the end of a function and the following instruction
belongs to a new function, or we may be looking at unwind information
which only covers the call instruction and not the subsequent instruction.
But when we're talking about deciding which row of an UnwindPlan to
execute, we want to use the actual byte offset in the function, not the
byte offset - 1.
Right now RegisterContextLLDB is tracking both the "real" offset and
an "offset minus one" and different parts of the class have to know
which one to use and they need to be updated/set in tandem. I want
to revisit this at some point.
The second change made in looking up eh_frame information; it was
formerly done by looking for the start address of the function we
are currently executing. But it is possible to have unwind information
for a function which only covers a small section of the function's
address range. In which case looking up by the start pc value may not
find the eh_frame FDE.
The hand-written _sigtramp() unwind info on Mac OS X, which covers
exactly one instruction in the middle of the function, happens to
trigger both of these issues.
I still need to get the UnwindPlan runner to handle arbitrary dwarf
expressions in the FDE but there's a good chance it will be easy to
reuse the DWARFExpression class to do this.
llvm-svn: 118882
logic that supported calling functions with arbitrary
arguments. We use ClangFunction for this, and the
low-level logic is only required to support one or two
pointer arguments.
llvm-svn: 118871
namespaces by name given an optional symbol context. I might end up
dressing up the "clang::NamespaceDecl" into a lldb_private::Namespace
class if we need to do more than is currenlty required of namespaces.
Currently we only need to be able to lookup a namespace by name when
parsing expressions, so I kept it simple for now. The idea here is
even though we are passing around a "clang::NamespaceDecl *", that
we always have it be an opaque pointer (it is forward declared inside
of "lldb/Core/ClangForward.h") and we only use clang::NamespaceDecl
implementations inside of ClangASTContext, or ClangASTType when we need
to extract information from the namespace decl object.
llvm-svn: 118737
comes from by using a virtual function to provide it from the Module's
SymbolVendor by default. This allows the DWARF parser, when being used to
parse DWARF in .o files with a parent DWARF + debug map parser, to get its
type list from the DWARF + debug map parser so when we go and find full
definitions for types (that might come from other .o files), we can use the
type list from the debug map parser. Otherwise we ended up mixing clang types
from one .o file (say a const pointer to a forward declaration "class A") with
the a full type from another .o file. This causes expression parsing, when
copying the clang types from those parsed by the DWARF parser into the
expression AST, to fail -- for good reason. Now all types are created in the
same list.
Also added host support for crash description strings that can be set before
doing a piece of work. On MacOSX, this ties in with CrashReporter support
that allows a string to be dispalyed when the app crashes and allows
LLDB.framework to print a description string in the crash log. Right now this
is hookup up the the CommandInterpreter::HandleCommand() where each command
notes that it is about to be executed, so if we crash while trying to do this
command, we should be able to see the command that caused LLDB to exit. For
all other platforms, this is a nop.
llvm-svn: 118672
Fixed the DWARF plug-in such that when it gets all attributes for a DIE, that
it omits the DW_AT_sibling and DW_AT_declaration when getting attributes
from a DW_AT_abstract_origin or DW_AT_specification DIE.
llvm-svn: 118654
FuncUnwinders object if the eh_frame section was missing
from an objfile. Worked fine on x86_64 but on i386 where
eh_frame is unusual, that resulted in the arch default
UnwindPlan being used all the time instead of picking up
an assembly profile based unwindplan.
llvm-svn: 118467
every external variable reference in the module,
and returning a clean error (instead of letting
LLVM issue a fatal error) if the variable could
not be resolved.
llvm-svn: 118388
and "/private/tmp/a.c". This was done by adding a "mutable bool m_is_resolved;"
member to FileSpec and then modifying the equal operator to check if the
filenames are equal, and if they are, then check the directories. If they are
not equal, then both paths are checked to see if they have been resolved. If
they have been resolved, we resolve the paths in temporary FileSpec objects
and set each of the m_is_resolved bools to try (for lhs and rhs) if the paths
match what is contained in the path. This allows us to do more intelligent
compares without having to resolve all paths found in the debug info (which
can quickly get costly if the files are on remote NFS mounts).
llvm-svn: 118387
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319
lldb_private::SharingPtr<A> p = llvm::make_shared<A>(i, j);
Currently up to five constructor arguments are supported and each must be an LValue.
llvm-svn: 118317
fixed them. Added DISALLOW_COPY_AND_ASSIGN to classes that should
not be bitwise copied. Added default initializers for member
variables that weren't being initialized in the ctor. Fixed a few
shadowed local variable mistakes.
llvm-svn: 118240
adding support into lldb_private::Process:
virtual uint32_t
lldb_private::Process::LoadImage (const FileSpec &image_spec,
Error &error);
virtual Error
lldb_private::Process::UnloadImage (uint32_t image_token);
There is a default implementation that should work for both linux and MacOSX.
This ability has also been exported through the SBProcess API:
uint32_t
lldb::SBProcess::LoadImage (lldb::SBFileSpec &image_spec,
lldb::SBError &error);
lldb::SBError
lldb::SBProcess::UnloadImage (uint32_t image_token);
Modified the DynamicLoader plug-in interface to require it to be able to
tell us if it is currently possible to load/unload a shared library:
virtual lldb_private::Error
DynamicLoader::CanLoadImage () = 0;
This way the dynamic loader plug-ins are allows to veto whether we can
currently load a shared library since the dynamic loader might know if it is
currenlty loading/unloading shared libraries. It might also know about the
current host system and know where to check to make sure runtime or malloc
locks are currently being held.
Modified the expression parser to have ClangUserExpression::Evaluate() be
the one that causes the dynamic checkers to be loaded instead of other code
that shouldn't have to worry about it.
llvm-svn: 118227
the end of the list. We had an issue in the MacOSX dynamic loader where if
we had shlibs:
1 - a.out
2 - a.dylib
3 - b.dylib
And then a.dylib got unloaded, we would unload b.dylib due to the assumption
that only shared libraries could come off the end of the list. We now properly
search and find which ones get loaded.
Added a new internal logging category for the "lldb" log channel named "dyld".
This should allow all dynamic loaders to use this as a generic log channel so
we can track shared library loads and unloads in the logs without having to
have each plug-in make up its own logging channel.
llvm-svn: 118147