This extract a common isNotVisibleOnUnwind() helper into
AliasAnalysis, which handles allocas, byval arguments and noalias
calls. After D116998 this could also handle sret arguments. We
have similar logic in DSE and MemCpyOpt, which will be switched
to use this helper as well.
The noalias call case is a bit different from the others, because
it also requires that the object is not captured. The caller is
responsible for doing the appropriate check.
Differential Revision: https://reviews.llvm.org/D117000
We use the same similarity scheme we used for branch instructions for phi nodes, and allow them to be outlined. There is not a lot of special handling needed for these phi nodes when outlining, as they simply act as outputs. The code extractor does not currently allow for non entry blocks within the extracted region to have predecessors, so there are not conflicts to handle with respect to predecessors no longer contained in the function.
Recommit of 515eec3553
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106997
Due to some complications with lifetime, and assume-like intrinsics, intrinsics were not included as outlinable instructions. This patch opens up most intrinsics, excluding lifetime and assume-like intrinsics, to be outlined. For similarity, it is required that the intrinsic IDs, and the intrinsics names match exactly, as well as the function type. This puts intrinsics in a different class than normal call instructions (https://reviews.llvm.org/D109448), where the name will no longer have to match.
This also adds an additional command line flag debug option to disable outlining intrinsics.
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D109450
The outliner currently requires that function calls not be indirect calls, and have that the function name, and function type must match, as well as other attributes such as calling conventions. This patch treats called functions as values, and just another operand, and named function calls as constants. This allows functions to be treated like any other constant, or input and output into the outlined functions.
There are also debugging flags added to enforce the old behaviors where indirect calls not be allowed, and to enforce the old rule that function calls names must also match.
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D109448
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This patch adds support for implication inference logic for the
following pattern:
```
lhs < (y >> z) <= y, y <= rhs --> lhs < rhs
```
We should be able to use the fact that value shifted to right is
not greater than the original value (provided it is non-negative).
Differential Revision: https://reviews.llvm.org/D116150
Reviewed-By: apilipenko
This matches the actual runtime function more closely.
I considered also renaming both RetainRV/UnsafeClaimRV to end with
"ARV", for AutoreleasedReturnValue, but there's less potential
for confusion there.
Presence of operand bundles changes semantics in respect to ModRef. In particular, spec says: "From the compilers perspective, deoptimization operand bundles make the call sites theyre attached to at least readonly. They read through all of their pointer typed operands (even if theyre not otherwise escaped) and the entire visible heap. Deoptimization operand bundles do not capture their operands except during deoptimization, in which case control will not be returned to the compiled frame". Fix handling of llvm.memcpy.* according to the spec.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D118033
The behavior in Analysis (knownbits) implements poison semantics already,
and we expect the transforms (for example, in instcombine) derived from
those semantics, so this patch changes the LangRef and remaining code to
be consistent. This is one more step in removing "undef" from LLVM.
Without this, I think https://github.com/llvm/llvm-project/issues/53330
has a legitimate complaint because that report wants to allow subsequent
code to mask off bits, and that is allowed with undef values. The clang
builtins are not actually documented anywhere AFAICT, but we might want
to add that to remove more uncertainty.
Differential Revision: https://reviews.llvm.org/D117912
Peculiarly, the necessary code to handle pointers (including the
check for non-integral address spaces) is already in place,
because we were already allowing vectors of pointers here, just
not plain pointers.
The tensorflow AOT compiler can cross-target, but it can't run on (for
example) arm64. We added earlier support where the AOT-ed header and object
would be built on a separate builder and then passed at build time to
a build host where the AOT compiler can't run, but clang can be otherwise
built.
To simplify such scenarios given we now support more than one AOT-able
case (regalloc and inliner), we make the AOT scenario centered on whether
files are generated, case by case (this includes the "passed from a
different builder" scenario).
This means we shouldn't need an 'umbrella' LLVM_HAVE_TF_AOT, in favor of
case by case control. A builder can opt out of an AOT case by passing that case's
model path as `none`. Note that the overrides still take precedence.
This patch controls conditional compilation with case-specific flags,
which can be enabled locally, for the component where those are
available. We still keep an overall flag for some tests.
The 'development/training' mode is unchanged, because there the model is
passed from the command line and interpreted.
Differential Revision: https://reviews.llvm.org/D117752
The bulk of the implementation is common between 'release' mode (==AOT-ed
model) and 'development' mode (for training), the main difference is
that in development mode, we may also log features (for training logs),
inject scoring information (currently after the Virtual Register
Rewriter) and then produce the log file.
This patch also introduces the score injection pass, 'Register
Allocation Pass Scoring', which is trivially just logging the score in
development mode.
Differential Revision: https://reviews.llvm.org/D117147
The global state refers to the number of the nodes currently in the
module, and the number of direct calls between nodes, across the
module.
Node counts are not a problem; edge counts are because we want strictly
the kind of edges that affect inlining (direct calls), and that is not
easily obtainable without iteration over the whole module.
This patch avoids relying on analysis invalidation because it turned out
to be too aggressive in some cases. It leverages the fact that Node
objects are stable - they do not get deleted while cgscc passes are
run over the module; and cgscc pass manager invariants.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D115847
LLVM Programmer’s Manual strongly discourages the use of `std::vector<bool>` and suggests `llvm::BitVector` as a possible replacement.
This patch does just that for llvm.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D117121
Integrate intersection with assumes into getBlockValue(), to ensure
that it is consistently performed.
We were doing it in nearly all places, but for example missed it
for select inputs.
Following up on 1470f94d71 (r63981173):
The result here (probably) depends on endianness. Don't bother
trying to handle this exotic case, just bail out.
Allocation functions should be marked with onlyAccessesInaccessibleMemory (when that is correct for the given function) which is checked elsewhere so this check is no longer needed.
Differential Revision: https://reviews.llvm.org/D117180
Since we don't merge/expand non-sequential umin exprs into umin_seq exprs,
we may have umin_seq(umin(umin_seq())) chain, and the innermost umin_seq
can have duplicate operands still.
This doesn't require callers to put the pointer operand and the indices
in a container like a vector when calling the function. This is not
really an issue with the existing callers. But when using it from
IRBuilder the inputs are available as separate pointer value and indices
ArrayRef.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D117038
The reinterpret load code will convert undef values into zero.
Check the uniform value case before it to produce a better result
for all-undef initializers.
However, the uniform value handling will return the uniform value
even if the access is out of bounds, while the reinterpret load
code will return undef. Add an explicit check to retain the
previous result in this case.
The basic idea is that we can parameterize the getObjectSize implementation with a callback which lets us replace the operand before analysis if desired. This is what Attributor is doing during it's abstract interpretation, and allows us to have one copy of the code.
Note this is not NFC for two reasons:
* The existing attributor code is wrong. (Well, this is under-specified to be honest, but at least inconsistent.) The intermediate math needs to be done in the index type of the pointer space. Imagine e.g. i64 arguments in a 32 bit address space.
* I did not preserve the behavior in getAPInt where we return 0 for a partially analyzed value. This looks simply wrong in the original code, and nothing test wise contradicts that.
Differential Revision: https://reviews.llvm.org/D117241