Summary:
This patch makes LoopDeletion use the incremental DominatorTree API.
We modify LoopDeletion to perform the deletion in 5 steps:
1. Create a new dummy edge from the preheader to the exit, by adding a conditional branch.
2. Inform the DomTree about the new edge.
3. Remove the conditional branch and replace it with an unconditional edge to the exit. This removes the edge to the loop header, making it unreachable.
4. Inform the DomTree about the deleted edge.
5. Remove the unreachable block from the function.
Creating the dummy conditional branch is necessary to perform incremental DomTree update.
We should consider using the batch updater when it's ready.
Reviewers: dberlin, davide, grosser, sanjoy
Reviewed By: dberlin, grosser
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35391
llvm-svn: 309850
This patch is update after the first patch (https://reviews.llvm.org/rL309651) based on the post-commit comments.
Stack coloring pass need to maintain AliasAnalysis information when merging stack slots of different types.
Actually, there is a FIXME comment in StackColoring.cpp
// FIXME: In order to enable the use of TBAA when using AA in CodeGen,
// we'll also need to update the TBAA nodes in MMOs with values
// derived from the merged allocas.
But, TBAA has been already enabled in CodeGen without fixing this pass.
The incorrect TBAA metadata results in recent failures in bootstrap test on ppc64le (PR33928) by allowing unsafe instruction scheduling.
Although we observed the problem on ppc64le, this is a platform neutral issue.
This patch makes the stack coloring pass maintains AliasAnalysis information when merging multiple stack slots.
This patch fixes PR33928.
llvm-svn: 309849
This reverts commit r309042, thereby adding a test for -fsanitize=vptr
functionality without -fsanitize=null. It also removes -fsanitize=null
from another -fsanitize=vptr test.
llvm-svn: 309847
In r309007, I made -fsanitize=null a hard prerequisite for -fsanitize=vptr. I
did not see the need for the two checks to have separate null checking logic
for the same pointer. I expected the two checks to either always be enabled
together, or to be mutually compatible.
In the mailing list discussion re: r309007 it became clear that that isn't the
case. If a codebase is -fsanitize=vptr clean but not -fsanitize=null clean,
it's useful to have -fsanitize=vptr emit its own null check. That's what this
patch does: with it, -fsanitize=vptr can be used without -fsanitize=null.
Differential Revision: https://reviews.llvm.org/D36112
llvm-svn: 309846
GAS ignores the aforementioned issue
this patch aligns LLVM + throws in an appropriate warning
Differential Revision: https://reviews.llvm.org/D36060
llvm-svn: 309841
Reviewing another change I noticed that we use "getSymbols" to mean
different things in different files. Depending on the file it can
return
ArrayRef<StringRef>
ArrayRef<SymbolBody*>
ArrayRef<Symbol*>
ArrayRef<Elf_Sym>
With this change it always returns an ArrayRef<SymbolBody*>. The other
functions are renamed getELFsyms() and getSymbolNames().
Note that we cannot return ArrayRef<Symbol*> instead of
ArreyRef<SymbolBody*> because local symbols have a SymbolBody but not
a Symbol.
llvm-svn: 309840
Summary:
Adding a new restructuredText file to document the trace format produced with
an FDR mode handler and read by llvm-xray toolset.
Reviewers: dberris, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36041
llvm-svn: 309836
When compiling with clang, explicit instantiation of the
OwningScopAnalysisManagerFunctionProxy needs to happen within the polly
namespace. Same goes with the specialization of its run method.
llvm-svn: 309835
If there are no calls, this is a faster path than
searching the entire program for calls.
This was supposed to be left in r309781.
Fixes unused variable warning.
llvm-svn: 309832
During store merge we construct a sorted list of consecutive store
candidates and consider subsequences for merging into a single
store. For each subsequence we check if the stored value type is legal
the merged store would have valid and fast and if the constructed
value to be stored is valid. The only properties that affect this
check between subsequences is the size of the subsequence, the
alignment of the first store, the alignment of the stored load value
(when merging stores-of-loads), and whether the merged value is a
constant zero.
If we do not find a viable mergeable subsequence starting from the
first store of length N, we know that a subsequence starting at a
later store of length N will also fail unless the new store's
alignment, the new load's alignment (if we're merging store-of-loads),
or we've dropped stores of nonzero value and could construct a merged
stores of zero (for merging constants).
As a result if we fail to find a valid subsequence starting from the
first store we can safely skip considering subsequences that start
with subsequent stores unless one of the above properties is
true. This significantly (2x) improves compile time in some
pathological cases.
Reviewers: RKSimon, efriedma, zvi, spatel, waltl
Subscribers: grandinj, llvm-commits
Differential Revision: https://reviews.llvm.org/D35901
llvm-svn: 309830
When the data segment is the last segment, it is correct to leave
it unaligned. However, when the code segment is the last segment,
it should be aligned to the page boundary to avoid loading the
non-segment parts of the ELF file at the end of the file.
Differential Revision: https://reviews.llvm.org/D33630
llvm-svn: 309829
Summary:
This patch is a first attempt at registering Polly passes with the LLVM tools. Tool plugins are still unsupported, but this registration is usable from the tools if Polly is linked into them (albeit requiring minimal patches to those tools). Registration requires a small amount of machinery (the owning analysis proxies), necessary for injecting ScopAnalysisManager objects into the calling tools.
This patch is marked WIP because the registration is incomplete. Parsing manual pipelines is fully supported, but default pass injection into the O3 pipeline is lacking, mostly because there is opportunity for some redesign here, I believe. The first point of order would be insertion points. I think it makes sense to run before the vectorizers. Running Polly Early, however, is weird. Mostly because it actually is the default (which to me is unexpected), and because Polly runs it's own O1 pipeline. Why not instead insert it at an appropriate place somewhere after simplification happend? Running after the loop optimizers seems intuitive, but it also seems wasteful, since multiple consecutive loops might well be a single scop, and we don't need to run for all of them.
My second request for comments would be regarding all those smallish helper passes we have, like PollyViewer, PollyPrinter, PollyImportJScop. Right now these are controlled by command line options, deciding whether they should be part of the Polly pipeline. What is your opinion on treating them like real passes, and have the user write an appropriate pipeline if they want to use any of them?
Reviewers: grosser, Meinersbur, bollu
Reviewed By: grosser
Subscribers: llvm-commits, pollydev
Tags: #polly
Differential Revision: https://reviews.llvm.org/D35458
llvm-svn: 309826
Summary:
**Remove debug metadata from instruction to be copied to prevent the source file's debug metadata being copied into GPUModule and eventually failing Module verification and ASM string codegeneration.**
When copying the instruction onto the Module meant for the GPU, debug metadata attached to an instruction causes all related metadata to be pulled into the Module, including the DICompileUnit, which is not listed in llvm.dbg.cu of the Module. This fails the verification of the Module and generation of the ASM string.
The only debug metadata of the instruction, the DebugLoc, is unset by this patch.
This patch reattempts https://reviews.llvm.org/D35630 by targeting only those instructions that are to end up in a Module meant for the GPU.
Reviewers: grosser, bollu
Reviewed By: grosser
Subscribers: pollydev
Tags: #polly
Differential Revision: https://reviews.llvm.org/D36161
llvm-svn: 309822
mostly prints and exceptions.
Few behavioral changes are documented in the text
Generated Makefile is identical between python2 and python3
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Aaron Watry <awatry@gmail.com>
llvm-svn: 309820
Summary: This is required by the libc++ locale support.
Reviewers: jyknight
Subscribers: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D36121
llvm-svn: 309815
Summary:
Currently most of the time vectors of extractelement instructions are
treated as scalars that must be gathered into vectors. But in some
cases, like when we have extractelement instructions from single vector
with different constant indeces or from 2 vectors of the same size, we
can treat this operations as shuffle of a single vector or blending of 2
vectors.
```
define <2 x i8> @g(<2 x i8> %x, <2 x i8> %y) {
%x0 = extractelement <2 x i8> %x, i32 0
%y1 = extractelement <2 x i8> %y, i32 1
%x0x0 = mul i8 %x0, %x0
%y1y1 = mul i8 %y1, %y1
%ins1 = insertelement <2 x i8> undef, i8 %x0x0, i32 0
%ins2 = insertelement <2 x i8> %ins1, i8 %y1y1, i32 1
ret <2 x i8> %ins2
}
```
can be converted to something like
```
define <2 x i8> @g(<2 x i8> %x, <2 x i8> %y) {
%1 = shufflevector <2 x i8> %x, <2 x i8> %y, <2 x i32> <i32 0, i32 3>
%2 = mul <2 x i8> %1, %1
ret <2 x i8> %2
}
```
Currently this type of conversion is considered as high cost
transformation.
Reviewers: mzolotukhin, delena, mkuper, hfinkel, RKSimon
Subscribers: ashahid, RKSimon, spatel, llvm-commits
Differential Revision: https://reviews.llvm.org/D30200
llvm-svn: 309812
Summary: I made a mistake in handling transitive invalidation of analysis results. I've updated the list of preserved analyses as well as the correct result dependences.
The Invalidator passed through the invalidate() path can be used to
transitively invalidate analyses. It frequently happens that analysis
results depend on other analyses, and thus store references to their
results. When the dependee now gets invalidated, the depender needs to
be invalidated as well. This is the purpose of the Invalidator object,
which can be used to check whether some dependee analysis is in the
process of being invalidated. I originally was checking the wrong
dependee analyses, which is an actual error, you can only check analysis
results that are in the cache (which they are if you've captured their
reference). The invalidation I'm handling inside the proxy deals with
the standard analyses the proxy passes into the Scop pipeline, since I'm
capturing their reference.
This checking allows us to actually preserve a couple of results outside
of the proxy, since the Scop pipeline shouldn't break those, or
otherwise should update them accordingly.
Reviewers: grosser, Meinersbur, bollu
Reviewed By: grosser
Subscribers: pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D36216
llvm-svn: 309811
Originally, we weren't able to match on Type nodes themselves (only QualType),
so the hasDeclaration matcher was initially written to give what we thought are
reasonable results for QualType matches.
When we chagned the matchers to allow matching on Type nodes, it turned out
that the hasDeclaration matcher was by chance written templated enough to now
allow hasDeclaration to also match on (some) Type nodes.
This patch change the hasDeclaration matcher to:
a) work the same on Type and QualType nodes,
b) be completely explicit about what nodes we can match instead of just allowing
anything with a getDecl() to match,
c) explicitly control desugaring only one level in very specific instances.
d) adds hasSpecializedTemplate and tagType matchers to allow migrating
existing use cases that now need more explicit matchers
Note: This patch breaks clang-tools-extra. The corresponding patch there
is approved and will land in a subsequent patch.
Differential Revision: https://reviews.llvm.org/D27104
llvm-svn: 309809
We introduce `polly_mallocManaged` and `polly_freeManaged` as
proxies for `cudaMallocManaged` / `cudaFree`. This is currently not
used by Polly. It is auxiliary code that is used in `COSMO`.
This is useful because `polly_mallocManaged` matches the signature of `malloc`,
while `cudaMallocManaged` does not. We introduce `polly_freeManaged` for
symmetry.
We use this in COSMO to use the unified memory feature of the newer
CUDA APIs (>= 6).
Differential Revision: https://reviews.llvm.org/D35991
llvm-svn: 309808
This should enable us to test the generation of target-specific constant
pools, e.g. for ARM:
constants:
- id: 0
value: 'g(GOT_PREL)-(LPC0+8-.)'
alignment: 4
isTargetSpecific: true
I intend to use this to test PIC support in GlobalISel for ARM.
This is difficult to test outside of that context, since the existing
MIR tests usually rely on parser support as well, and that seems a bit
trickier to add. We could try to add a unit test, but the setup for that
seems rather convoluted and overkill.
We do test however that the parser reports a nice error when
encountering a target-specific constant pool.
Differential Revision: https://reviews.llvm.org/D36092
llvm-svn: 309806
Summary:
Fix a bug discovered in an out-of-tree target where memoperands from
pseudo-instructions that weren't part of the match were being merged into the
result instructions as part of GIR_MergeMemOperands.
This bug was caused by a change to the handling of State.MIs between rules when
the state machine tables were fused into a single table. Previously, each rule
would reset State.MIs using State.MIs.resize(1) but this is no longer done, as a
result stale data is occasionally left in some elements of State.MIs. Most
opcodes aren't affected by this but GIR_MergeMemOperands merges all memoperands
from the intructions recorded in State.MIs into the result instruction.
Suppose for example, we processed but rejected the following pattern:
(signextend (load x))
at this point, State.MIs contains the signextend and the load. Now suppose we
process and accept this pattern:
(add x, y)
at this point, State.MIs contains the add as well as the (now irrelevant) load.
When GIR_MergeMemOperands is processed, the memoperands from that irrelevant
load will be merged into the result instruction even though it was not part of
the match.
Bringing back the State.MIs.resize(1) would fix the problem but it would limit
our ability to optimize the table in the future. Instead, this patch fixes the
problem by explicitly stating which instructions should be merged into the result.
There's no direct test case in this commit because a test case would be very brittle.
However, at the time of writing this should fix the failures in
http://green.lab.llvm.org/green/job/Compiler_Verifiers_GlobalISEL/ as well as a
failure in test/CodeGen/ARM/GlobalISel/arm-isel.ll when expensive checks are enabled.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Subscribers: fhahn, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D36094
llvm-svn: 309804
On mixing the driver and runtime APIs, it is quite possible that a
context already exists due to runtime API usage. In this case, Polly should
try to use the same context.
This patch teaches GPUJIT to detect that a context exists and how to
pick up this context.
Without this, calling `cudaMallocManaged`, for example, before a
polly-generated kernel launch causes P100 to *hang*.
This is a part of (https://reviews.llvm.org/D35991) that was extracted
out.
Differential Revision: https://reviews.llvm.org/D36162
llvm-svn: 309802