Summary:
Move ThinLTO global value processing functions out of ModuleLinker and
into a new ThinLTOGlobalProcessor class, which performs any necessary
linkage and naming changes on the given module in place.
As a result, renameModuleForThinLTO no longer needs to create a new
Module when performing any necessary local to global promotion on a
module that we are possibly exporting from during a ThinLTO backend
compilation.
During function importing the ThinLTO processing is still invoked from
the ModuleLinker (via the new class), as it needs to perform renaming and
linkage changes on the source module, e.g. in order to get the correct
renaming during local to global promotion.
Reviewers: joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D15696
llvm-svn: 257174
The function importer was still materializing metadata when modules were
loaded for function importing. We only want to materialize it when we
are going to invoke the metadata linking postpass. Materializing it
before function importing is not only unnecessary, but also causes
metadata referenced by imported functions to be mapped in early, and
then not connected to the rest of the module level metadata when it is
ultimately linked in.
Augmented the test case to specifically check for the metadata being
properly connected, which it wasn't before this fix.
llvm-svn: 257171
This patch corresponds to review:
http://reviews.llvm.org/D15930
Moves to and from CR fields depend on shifts/masks that depend on the
target/source CR field. Thus, post-ra anti-dep breaking must not later
change that CR register assignment.
llvm-svn: 257168
In setInsertionPoint if the value is not a PHI, Instruction or
Argument it should be a Constant, not a ConstantExpr.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257164
a top-down manner into a true top-down or RPO pass over the call graph.
There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.
Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.
This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.
In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.
Differential Revision: http://reviews.llvm.org/D15785
llvm-svn: 257163
Windows EH keeping track of which frame index corresponds to a catchpad
in order to inform the runtime where the catch parameter should be
initialized. LLVM's optimizations are able to prove that the memory
used by the catch parameter can be reused with another memory
optimization, changing it's frame index.
We need to keep WinEHFuncInfo up to date with respect to this or we will
miscompile/assert.
This fixes PR26069.
llvm-svn: 257158
Done in InstrProfWriter to eliminate the need for client
code to do the sorting. The operation is done once and reused
many times so it is more efficient. Update unit test to remove
sorting. Also update expected output of affected tests.
llvm-svn: 257145
For a new record with weight != 1, only edge profiling
counters are scaled, VP data is not properly scaled.
This patch refactors the code and fixes the problem.
Also added sort by count interface (for follow up patch).
llvm-svn: 257143
This remove the need for locking when deleting a function.
Differential Revision: http://reviews.llvm.org/D15988
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 257139
This is a fix for bug http://llvm.org/bugs/show_bug.cgi?id=25839.
For a PIC TLS variable access in a function, prologue (mflr followed by std and
stdu) gets scheduled after a tls_get_addr call. tls_get_addr messed up LR but
no one saves/restores it.
Also added a test for save/restore clobbered registers during calling __tls_get_addr.
Patch by Tim Shen
llvm-svn: 257137
The early return seems to be missed. This causes a radical and wrong loop
optimization on powerpc. It isn't reproducible on x86_64, because
"UseInterleaved" is false.
Patch by Tim Shen.
llvm-svn: 257134
Limit this transform to a basic block and guard against PHIs.
Hopefully, this fixes the remaining failures in PR25999:
https://llvm.org/bugs/show_bug.cgi?id=25999
llvm-svn: 257133
The new leader is known anyway so we can return it for some micro
optimization in code where it is easy to pass along the result to the
next join().
llvm-svn: 257130
.zero is confusing when used with two arguments. Documentation:
This directive emits SIZE 0-valued bytes. SIZE must be an absolute
expression. This directive is actually an alias for the '.skip'
directive so in can take an optional second argument of the value to
store in the bytes instead of zero. Using '.zero' in this way would be
confusing however.
Ref: https://sourceware.org/bugzilla/show_bug.cgi?id=18353
Hexagon and Sparc do the same, and it's all the same to WebAssembly so
let's pick the less confusing of the two.
llvm-svn: 257111
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D14276
llvm-svn: 257105
Summary:
In rL242338, debugger tuning was introduced, and the tuning for FreeBSD
was set to lldb by default. However, for the foreseeable future we
still need to default to gdb tuning, since lldb is not ready for all of
FreeBSD's architectures, and some system tools (like objcopy, etc) have
not yet been adapted to cope with the lldb tuned format, which has
.apple sections.
Therefore, let FreeBSD use gdb by default for now.
Reviewers: emaste, probinson
Subscribers: llvm-commits, emaste
Differential Revision: http://reviews.llvm.org/D15966
llvm-svn: 257103
We marked values which are 'undef' as constant instead of undefined
which violates SCCP's invariants. If we can figure out that a
computation results in 'undef', leave it in the undefined state.
This fixes PR16052.
llvm-svn: 257102
Fix PR24852 (crash with -debug -instcombine)
Patch by Than McIntosh <thanm@google.com>
Summary:
Add guards to the asm writer to prevent crashing
when dumping an instruction that has no basic
block.
Differential Revision: http://reviews.llvm.org/D15798
From: Than McIntosh <thanm@google.com>
llvm-svn: 257094
Coverage mapping data may reference names of functions
that are skipped by FE (e.g, unused inline functions). Since
those functions are skipped, normal instr-prof function lowering
pass won't put those names in the right section, so special
handling is needed to walk through coverage mapping structure
and recollect the references.
With this patch, only names that are skipped are processed. This
simplifies the lowering code and it no longer needs to make
assumptions coverage mapping data layout. It should also be
more efficient.
llvm-svn: 257091
The fix for PR23999 made us mark loads of null as producing the constant
undef which upsets the lattice. Instead, keep the load as "undefined".
This fixes PR26044.
llvm-svn: 257087
Previously we only supported putting the FI into memory operand offset
fields if there was nothing there already. Now combine them.
Differential Revision: http://reviews.llvm.org/D15941
llvm-svn: 257084
The MC assembler doesn't like using the empty string as a private label
prefix because then it treats all labels as private. This commit reverts
back to the default prefix, which is .L, which is common in ELF targets
and consistent with the LLVM name mangler.
llvm-svn: 257083
Summary:
Multi-dword constant loads generated unnecessary moves from SGPRs into VGPRs,
increasing the code size and VGPR pressure. These moves are now folded away.
Note that this lack of operand folding was not a problem for VMEM loads,
because COPY nodes from VReg_Nnn to VGPR32 are eliminated by the register
coalescer.
Some tests are updated, note that the fsub.ll test explicitly checks that
the move is elided.
With the IR generated by current Mesa, the changes are obviously relatively
minor:
7063 shaders in 3531 tests
Totals:
SGPRS: 351872 -> 352560 (0.20 %)
VGPRS: 199984 -> 200732 (0.37 %)
Code Size: 9876968 -> 9881112 (0.04 %) bytes
LDS: 91 -> 91 (0.00 %) blocks
Scratch: 1779712 -> 1767424 (-0.69 %) bytes per wave
Wait states: 295164 -> 295337 (0.06 %)
Totals from affected shaders:
SGPRS: 65784 -> 66472 (1.05 %)
VGPRS: 38064 -> 38812 (1.97 %)
Code Size: 1993828 -> 1997972 (0.21 %) bytes
LDS: 42 -> 42 (0.00 %) blocks
Scratch: 795648 -> 783360 (-1.54 %) bytes per wave
Wait states: 54026 -> 54199 (0.32 %)
Reviewers: tstellarAMD, arsenm, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15875
llvm-svn: 257074
Summary:
Somehow, I first interpreted the docs as saying space for xnack_mask is only
reserved when XNACK is enabled via SH_MEM_CONFIG. I felt uneasy about this and
went back to actually test what is happening, and it turns out that xnack_mask
is always reserved at least on Tonga and Carrizo, in the sense that flat_scr
is always fixed below the SGPRs that are used to implement xnack_mask, whether
or not they are actually used.
I confirmed this by writing a shader using inline assembly to tease out the
aliasing between flat_scratch and regular SGPRs. For example, on Tonga, where
we fix the number of SGPRs to 80, s[74:75] aliases flat_scratch (so
xnack_mask is s[76:77] and vcc is s[78:79]).
This patch changes both the calculation of the total number of SGPRs and the
various register reservations to account for this.
It ought to be possible to use the gap left by xnack_mask when the feature
isn't used, but this patch doesn't try to do that. (Note that the same applies
to vcc.)
Note that previously, even before my earlier change in r256794, the SGPRs that
alias to xnack_mask could end up being used as well when flat_scr was unused
and the total number of SGPRs happened to fall on the right alignment
(e.g. highest regular SGPR being used s29 and VCC used would lead to number
of SGPRs being 32, where s28 and s29 alias with xnack_mask). So if there
were some conflict due to such aliasing, we should have noticed that already.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15898
llvm-svn: 257073
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the
base pointers were the same. However, in the case where we have
complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs,
conversions to or from integers, etc) the value of the original
base pointer will be hidden to the optimizer and this transformation
will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the
relevant uses of GEPs to GEPs with a common base pointer. The
GEP comparison will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257064