Summary:
This patch adds instructions to the InstCombine worklist after they are properly inserted. This way we don't get `<badref>`s printed when logging added instructions.
It also adds a check in `Worklist::Add` that ensures that all added instructions have parents.
Simple test case that illustrates the difference when run with `--debug-only=instcombine`:
```
define i32 @test35(i32 %a, i32 %b) {
%1 = or i32 %a, 1135
%2 = or i32 %1, %b
ret i32 %2
}
```
Before this patch:
```
INSTCOMBINE ITERATION #1 on test35
IC: ADDING: 3 instrs to worklist
IC: Visiting: %1 = or i32 %a, 1135
IC: Visiting: %2 = or i32 %1, %b
IC: ADD: %2 = or i32 %a, %b
IC: Old = %3 = or i32 %1, %b
New = <badref> = or i32 %2, 1135
IC: ADD: <badref> = or i32 %2, 1135
...
```
With this patch:
```
INSTCOMBINE ITERATION #1 on test35
IC: ADDING: 3 instrs to worklist
IC: Visiting: %1 = or i32 %a, 1135
IC: Visiting: %2 = or i32 %1, %b
IC: ADD: %2 = or i32 %a, %b
IC: Old = %3 = or i32 %1, %b
New = <badref> = or i32 %2, 1135
IC: ADD: %3 = or i32 %2, 1135
...
```
Reviewers: fhahn, davide, spatel, foad, grosser, nikic
Reviewed By: nikic
Subscribers: nikic, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71093
Summary:
This patch teaches InstCombine to accept a new parameter: maximum number of iterations over functions.
InstCombine tries to simplify instructions by iterating over the whole function until the function stops changing. As a consequence, the last iteration before reaching a fixpoint visits all instructions in the worklist and never performs any rewrites.
Bounding the number of iterations can have 2 benefits:
* In case the users of the pass can make a good guess about the number of required iterations, we can save the time normally spent on the last iteration that doesn't change anything.
* When the wants to use InstCombine as a cleanup pass, it may be enough to run just a few iterations and stop even before reaching a fixpoint. This can be also useful for implementing a lightweight pass pipeline (think `-O1`).
This patch does not change the behavior of opt or Clang -- limiting the number of iterations is entirely opt-in.
Reviewers: fhahn, davide, spatel, foad, nlopes, grosser, lebedev.ri, nikic, xbolva00
Reviewed By: spatel
Subscribers: craig.topper, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71145
Summary:
This reverts commit c3b06d0c39.
Reason for revert: Caused miscompiles when inserting assume for undef.
Also adds a test to prevent similar breakage in future.
Fixes PR44154.
Reviewers: rnk, jdoerfert, efriedma, xbolva00
Reviewed By: rnk
Subscribers: thakis, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70933
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
I think we have to be a bit more careful when it comes to moving
ops across shuffles, if the op does restrict undef. For example, without
this patch, we would move 'and %v, <0, 0, -1, -1>' over a
'shufflevector %a, undef, <undef, undef, 1, 2>'. As a result, the first
2 lanes of the result are undef after the combine, but they really
should be 0, unless I am missing something.
For ops that do fold to undef on undef operands, the current behavior
should be fine. I've add conservative check OpDoesRestrictUndef, maybe
there's a better existing utility?
Reviewers: spatel, RKSimon, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D70093
Re-try because earlier attempts were reverted due to use-after-free.
Hopefully, diagnosed correctly this time - we replace/remove the
invariant.start first rather than the invariant.end to avoid angering
worklist-based iteration.
We gather a set of white-listed instructions in isAllocSiteRemovable() and then
replace/erase them. But we don't know in general if the instructions in the set
have uses amongst themselves, so order of deletion makes a difference.
There's already a special-case for the llvm.objectsize intrinsic, so add another
for llvm.invariant.start.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=43723
Differential Revision: https://reviews.llvm.org/D69977
Summary:
SimplifySelectsFeedingBinaryOp simplified binary ops when both operands
were selects with the same condition. This patch extends it to handle
these cases where only one operand is a select:
X op (C ? P : Q) -> C ? (X op P) : (X op Q)
// if X op P and X op Q both simplify
(C ? P : Q) op Y -> C ? (P op Y) : (Q op Y)
// if P op Y and Q op Y both simplify
For example: X *fast (C ? 1.0 : 0.0) -> C ? X : 0.0
Reviewers: mcberg2017, majnemer, craig.topper, qcolombet, mcrosier
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64713
Re-try rGef02831f0a4e (reverted due to use-after-free), but bail out completely
if we encounter an unexpected llvm.invariant.start.
We gather a set of white-listed instructions in isAllocSiteRemovable() and then
replace/erase them. But we don't know in general if the instructions in the set
have uses amongst themselves, so order of deletion makes a difference.
There's already a special-case for the llvm.objectsize intrinsic, so add another
for llvm.invariant.end.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=43723
Differential Revision: https://reviews.llvm.org/D69977
We gather a set of white-listed instructions in isAllocSiteRemovable() and then
replace/erase them. But we don't know in general if the instructions in the set
have uses amongst themselves, so order of deletion makes a difference.
There's already a special-case for the llvm.objectsize intrinsic, so add another
for llvm.invariant.end.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=43723
Differential Revision: https://reviews.llvm.org/D69977
Instcombiner pass was erasing trivially dead instruction without updating dependent llvm.dbg.value.
which was not showing programmer current state of variables while debugging.
As a part of this fix I did following,
Iterate throught all the users (llvm.dbg) of a instruction which is trivially dead and set each if them undef, Before deleting the instruction.
Now user will see optimized out, when try to print those variables.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=43893
This is my first fix to llvm.
Patch by kamlesh kumar!
Differential Revision: https://reviews.llvm.org/D69809
Summary:
in the following C code the branch is not removed by clang in O3.
```
int f1(char* p) {
int i1 = __builtin_strlen(p);
if (!p)
return -1;
return i1;
}
```
The issue is that the call to strlen is sunk to the following block by instcombine. In its new place the call to strlen doesn't dominate the use in the icmp anymore so value tracking can't see that p cannot be null.
This patch resolves the issue by inserting an assumption at the place of the call before sinking a call when that call can be used to prove an argument to be nonnull.
This resolves this issue at O3.
Reviewers: majnemer, xbolva00, fhahn, jdoerfert, spatel, efriedma
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69477
The test case here previously infinite looped. Only one element from the GEP is used so SimplifyDemandedVectorElts would replace the other lanes in each index with undef leading to the first index being <0, undef, undef, undef>. But there's a GEP transform that tries to replace an index into a 0 sized type with a zero index. But the zero index check only works on ConstantInt 0 or ConstantAggregateZero so it would turn the index back to zeroinitializer. Resulting in a loop.
The fix is to use m_Zero() to allow a vector of zeroes and undefs.
Differential Revision: https://reviews.llvm.org/D67977
llvm-svn: 373000
Currently m_Br only takes references to BasicBlock*, which limits its
flexibility. For example, you have to declare a variable, even if you
ignore the result or you have to have additional checks to make sure the
matched BB matches an expected one.
This patch adds m_BasicBlock and m_SpecificBB matchers, which can be
used like the existing matchers for constants or values.
I also had a look at the existing uses and updated a few. IMO it makes
the code a bit more explicit.
Reviewers: spatel, craig.topper, RKSimon, majnemer, lebedev.ri
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D68013
llvm-svn: 372885
TryToSinkInstruction() has a bug: While updating debug info for
sunk instruction, it could clone dbg.declare intrinsic.
That is wrong. There could be only one dbg.declare.
The fix is to not clone dbg.declare intrinsic and to update
it`s arguments, to not to point to sunk instruction.
Differential Revision: https://reviews.llvm.org/D67217
llvm-svn: 371587
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Always true/false checks were flagged by static analysis;
https://bugs.llvm.org/show_bug.cgi?id=43143
I have not confirmed the logic difference in propagating nsw vs. nuw,
but presumably we would have noticed a bug by now if that was wrong.
llvm-svn: 370248
Summary:
In SimplifySelectsFeedingBinaryOp, propagate fast math flags from the
outer op into both arms of the new select, to take advantage of
simplifications that require fast math flags.
Reviewers: mcberg2017, majnemer, spatel, arsenm, xbolva00
Subscribers: wdng, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65658
llvm-svn: 368175
In InstCombine, we use an idiom of "store i1 true, i1 undef" to indicate we've found a path which we've proven unreachable. We can't actually insert the unreachable instruction since that would require changing the CFG. We leave that to simplifycfg later.
This just factors out that idiom creation so we don't duplicate the same mostly undocument idiom creation in multiple places.
llvm-svn: 358600
This adds a WithOverflowInst class with a few helper methods to get
the underlying binop, signedness and nowrap type and makes use of it
where sensible. There will be two more uses in D60650/D60656.
The refactorings are all NFC, though I left some TODOs where things
could be improved. In particular we have two places where add/sub are
handled but mul isn't.
Differential Revision: https://reviews.llvm.org/D60668
llvm-svn: 358512
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
If we have a commutable vector binop with inverted select-shuffles,
we don't care about the order of the operands in each vector lane:
LHS = shuffle V1, V2, <0, 5, 6, 3>
RHS = shuffle V2, V1, <0, 5, 6, 3>
LHS + RHS --> <V1[0]+V2[0], V2[1]+V1[1], V2[2]+V1[2], V1[3]+V2[3]> --> V1 + V2
PR41304:
https://bugs.llvm.org/show_bug.cgi?id=41304
...is currently titled as an SLP enhancement, but at least for the
given example, we can reduce that in instcombine because we are just
eliminating shuffles.
As noted in the TODO, this could be generalized, but I haven't thought
through those patterns completely, so this is limited to what appears
to be always safe.
Differential Revision: https://reviews.llvm.org/D60048
llvm-svn: 357382
A change of two parts:
1) A generic enhancement for all callers of SDVE to exploit the fact that if all lanes are undef, the result is undef.
2) A GEP specific piece to strengthen/fix the vector index undef element handling, and call into the generic infrastructure when visiting the GEP.
The result is that we replace a vector gep with at least one undef in each lane with a undef. We can also do the same for vector intrinsics. Once the masked.load patch (D57372) has landed, I'll update to include call tests as well.
Differential Revision: https://reviews.llvm.org/D57468
llvm-svn: 356293
When instcombine sinks an instruction between two basic blocks, it sinks any
dbg.value users in the source block with it, to prevent debug use-before-free.
However we can do better by attempting to salvage the debug users, which would
avoid moving where the variable location changes. If we successfully salvage,
still sink a (cloned) dbg.value with the sunk instruction, as the sunk
instruction is more likely to be "live" later in the compilation process.
If we can't salvage dbg.value users of a sunk instruction, mark the dbg.values
in the original block as being undef. This terminates any earlier variable
location range, and represents the fact that we've optimized out the variable
location for a portion of the program.
Differential Revision: https://reviews.llvm.org/D56788
llvm-svn: 353936
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
InstCombine's sinking algorithm only thinks about memory. It doesn't
think about non-memory constraints like stack object lifetime. It can
sink dynamic allocas across a stacksave call, which may be used with
stackrestore, which can incorrectly reduce the lifetime of the dynamic
alloca.
Fixes PR40365
Reviewers: hfinkel, efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56872
llvm-svn: 351475
The problem is shown specifically for a case with vector multiply here:
https://bugs.llvm.org/show_bug.cgi?id=40032
...and this might mask the original backend bug for ARM shown in:
https://bugs.llvm.org/show_bug.cgi?id=39967
As the test diffs here show, we were (and probably still aren't) doing
these kinds of transforms in a principled way. We are producing more or
equal wide instructions than we started with in some cases, so we still
need to restrict/correct other transforms from overstepping.
If there are perf regressions from this change, we can either carve out
exceptions to the general IR rules, or improve the backend to do these
transforms when we know the transform is profitable. That's probably
similar to a change like D55448.
Differential Revision: https://reviews.llvm.org/D55744
llvm-svn: 349389
When we have a shuffle that extends a source vector with undefs
and then do some binop on that, we must make sure that the extra
elements remain undef with that binop if we reverse the order of
the binop and shuffle.
'or' is probably the easiest example to show the bug because
'or C, undef --> -1' (not undef). But there are other
opcode/constant combinations where this is true as shown by
the 'shl' test.
llvm-svn: 348191
I tried to change this, not quite realising the logic behind what we
were doing. Hopefully this comment will help the next person to come
along.
llvm-svn: 347653
InstCombine features an optimization that essentially replaces:
if (a)
free(a)
into:
free(a)
Right now, this optimization is gated by the minsize attribute and therefore
we only perform it if we can prove that we are going to be able to eliminate
the branch and the destination block.
However when casts are involved the optimization would fail to apply, because
the optimization was not smart enough to realize that it is possible to also
move the casts away from the destination block and that is harmless to the
performance since they are just noops.
E.g.,
foo(int *a)
if (a)
free((char*)a)
Wouldn't be optimized by instcombine, because
- We would refuse to hoist the `bitcast i32* %a to i8` in the source block
- We would fail to see that `bitcast i32* %a to i8` and %a are the same value.
This patch fixes both these problems:
- It teaches the pattern matching of the comparison how to look
through casts.
- It checks that whether the additional instruction in the destination block
can be hoisted and are harmless performance-wise.
- It hoists all the code of the destination block in the source block.
Differential Revision: D53356
llvm-svn: 345644
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
Currently running the @insertelem_after_gep function below through the InstCombine pass with opt produces invalid IR.
Input:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t1 = bitcast <16 x i32>* %t0 to [16 x i32]*
%t2 = addrspacecast [16 x i32]* %t1 to [16 x i32] addrspace(3)*
%t3 = getelementptr inbounds [16 x i32], [16 x i32] addrspace(3)* %t2, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @extern_vec_pointers_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Output:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t3 = getelementptr inbounds <16 x i32>, <16 x i32>* %t0, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @my_extern_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Which although causes no complaints when produced, isn't valid IR as the insertelement use of the %t3 GEP expects an address space.
```
opt: /tmp/bad.ll:52:73: error: '%t3' defined with type 'i32*' but expected 'i32 addrspace(3)*'
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
```
I've fixed this by adding an addrspacecast after the GEP in the InstCombine pass, and including a check for this type mismatch to the verifier.
Reviewers: spatel, lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52294
llvm-svn: 343956
1. Fix include ordering.
2. Improve variable name (width is bitwidth not number-of-elements).
3. Add local Opcode variable to reduce code duplication.
llvm-svn: 343694
The motivating case from:
https://bugs.llvm.org/show_bug.cgi?id=33026
...has no shuffles now. This kind of pattern may occur during
vectorization when targets have lumpy ISAs like SSE/AVX.
llvm-svn: 342988
Summary:
If the sub doesn't overflow in the original type we can move it above the sext/zext.
This is similar to what we do for add. The overflow checking for sub is currently weaker than add, so the test cases are constructed for what is supported.
Reviewers: spatel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52075
llvm-svn: 342335
Similar to rL342278:
The test diffs are all cosmetic due to the change in
value naming, but I'm including that to show that the
new code does perform these folds rather than something
else in instcombine.
D52075 should be able to use this code too rather than
duplicating all of the logic.
llvm-svn: 342292
This lines up with the behavior of an existing transform where if both
operands of the binop are shuffled, we allow moving the binop before the
shuffle regardless of whether the shuffle changes the size of the vector.
llvm-svn: 340787
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
getSafeVectorConstantForBinop() was calling getBinOpIdentity() assuming
that the constant we wanted was operand 1 (RHS). That's wrong, but I
don't think we could expose a bug or even a suboptimal fold from that
because the callers have other guards for any binop that would have
been affected.
llvm-svn: 336617
As discussed in D49047 / D48987, shift-by-undef produces poison,
so we can't use undef vector elements in that case..
Note that we need to extend this for poison-generating flags,
and there's a proposal to create poison from FMF in D47963,
llvm-svn: 336562
This is almost NFC, but there could be some case where the original
code had undefs in the constants (rather than just the shuffle mask),
and we'll use safe constants rather than undefs now.
The FIXME noted in foldShuffledBinop() is already visible in existing
tests, so correcting that is the next step.
llvm-svn: 336558
As noted in rL333782, we can be both better for optimization and
safer with this transform:
BinOp (shuffle V1, Mask), C --> shuffle (BinOp V1, NewC), Mask
The only potentially unsafe-to-speculate binops are integer div/rem.
All other binops are always safe (although I don't see a way to
assert that in code here).
For opcodes like shifts that can produce poison, it can't matter
here because we know the lanes with undef are dropped by the
subsequent shuffle.
Differential Revision: https://reviews.llvm.org/D47686
llvm-svn: 333962
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
As noted in the review thread for rL333782, we could have
made a bug harder to hit if we were simplifying instructions
before trying other folds.
The shuffle transform in question isn't ever a simplification;
it's just a canonicalization. So I've renamed that to make that
clearer.
This is NFCI at this point, but I've regenerated the test file
to show the cosmetic value naming difference of using
instcombine's RAUW vs. the builder.
Possible follow-ups:
1. Move reassociation folds after simplifies too.
2. Refactor common code; we shouldn't have so much repetition.
llvm-svn: 333820
This bug:
https://bugs.llvm.org/show_bug.cgi?id=37648
...was created with the enhancement to this transform with rL332479.
The urem test shows the disaster potential: any undef divisor lane makes
the whole op undef.
The test diffs show that vector demanded elements turns some of the potential,
but not all, unused binop operands back into undef already.
llvm-svn: 333782
Summary:
- Add wasm personality function
- Re-categorize the existing `isFuncletEHPersonality()` function into
two different functions: `isFuncletEHPersonality()` and
`isScopedEHPersonality(). This becomes necessary as wasm EH uses scoped
EH instructions (catchswitch, catchpad/ret, and cleanuppad/ret) but not
outlined funclets.
- Changed some callsites of `isFuncletEHPersonality()` to
`isScopedEHPersonality()` if they are related to scoped EH IR-level
stuff.
Reviewers: majnemer, dschuff, rnk
Subscribers: jfb, sbc100, jgravelle-google, eraman, JDevlieghere, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45559
llvm-svn: 332667
The canonicalization was restricted to shuffle masks with
a 1-to-1 mapping to the constant vector, but that disqualifies
the common splat pattern. This is part of solving PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463
llvm-svn: 332479
Summary:
Part of the InstCombine code for simplifying GEPs looks through
addrspacecasts. However, this was done by updating a variable
also used by the next transformation, for marking GEPs as
inbounds. This led to replacing a GEP with a similar instruction
in a different addrspace, which caused an assertion failure in RAUW.
This caused julia issue https://github.com/JuliaLang/julia/issues/27055
Patch by Jeff Bezanson <jeff@juliacomputing.com>
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D46722
llvm-svn: 332302
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
(notionally Scalar.h is part of libLLVMScalarOpts, so it shouldn't be
included by InstCombine which doesn't/shouldn't need to depend on
ScalarOpts)
llvm-svn: 330669
Summary:
When sinking an instruction in InstCombine we now also sink
the DbgInfoIntrinsics that are using the sunken value.
Example)
When sinking the load in this input
bb.X:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
br label %for.body
we now also move the dbg.value, like this
bb.X:
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br label %for.body
In the past we haven't moved the dbg.value so we got
bb.X:
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
br label %for.body
So in the past we got a debug-use before the def of %0.
And that dbg.value was also on the path jumping to %for.end, for
which %0 never was defined.
CodeGenPrepare normally comes to rescue later (when not moving
the dbg.value), since it moves dbg.value instrinsics quite
brutally, without really analysing if it is correct to move
the intrinsic (see PR31878).
So at the moment this patch isn't expected to have much impact,
besides that it is moving the dbg.value already in opt, making
the IR look more sane directly.
This can be seen as a preparation to (hopefully) make it possible
to turn off CodeGenPrepare::placeDbgValues later as a solution
to PR31878.
I also adjusted test/DebugInfo/X86/sdagsplit-1.ll to make the
IR in the test case up-to-date with this behavior in InstCombine.
Reviewers: rnk, vsk, aprantl
Reviewed By: vsk, aprantl
Subscribers: mattd, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45425
llvm-svn: 330243
The bitcast may be interfering with other combines or vectorization
as shown in PR16739:
https://bugs.llvm.org/show_bug.cgi?id=16739
Most pointer-related optimizations are probably able to look through
this bitcast, but removing the bitcast shrinks the IR, so it's at
least a size savings.
Differential Revision: https://reviews.llvm.org/D44833
llvm-svn: 330237
Two cleanups:
1. As noted in D45453, we had tests that don't need FMF that were misplaced in the 'fast-math.ll' test file.
2. This removes the final uses of dyn_castFNegVal, so that can be deleted. We use 'match' now.
llvm-svn: 330126
Summary:
This is a fix to PR37005.
Essentially, rL328539 ([InstCombine] reassociate loop invariant GEP chains to enable LICM) contains a bug
whereby it will convert:
%src = getelementptr inbounds i8, i8* %base, <2 x i64> %val
%res = getelementptr inbounds i8, <2 x i8*> %src, i64 %val2
into:
%src = getelementptr inbounds i8, i8* %base, i64 %val2
%res = getelementptr inbounds i8, <2 x i8*> %src, <2 x i64> %val
By swapping the index operands if the GEPs are in a loop, and %val is loop variant while %val2
is loop invariant.
This fix recreates new GEP instructions if the index operand swap would result in the type
of %src changing from vector to scalar, or vice versa.
Reviewers: sebpop, spatel
Reviewed By: sebpop
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45287
llvm-svn: 329331
This change brings performance of zlib up by 10%. The example below is from a
hot loop in longest_match() from zlib.
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 %idx.ext1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 -1
In this example %idx.ext1 is a loop invariant. It will be moved above the use of
loop induction variable %idx.ext such that it can be hoisted out of the loop by
LICM. The operands that have dependences carried by the loop will be sinked down
in the GEP chain. This patch will produce the following output:
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext1
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 -1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 %idx.ext
llvm-svn: 328539
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Also, rename 'foldOpWithConstantIntoOperand' because that's annoyingly
vague. The constant check is redundant in some cases, but it allows
removing duplication for most of the calls.
llvm-svn: 326329
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102