templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662
given DeclContext is dependent on type parameters. Use this to
properly determine whether a TagDecl is dependent; previously, we were
missing the case where the TagDecl is a local class of a member
function of a class template (phew!).
Also, make sure that, when we instantiate declarations within a member
function of a class template (or a function template, eventually),
that we add those declarations to the "instantiated locals" map so
that they can be found when instantiating declaration references.
Unfortunately, I was not able to write a useful test for this change,
although the assert() that fires when uncommenting the FIXME'd line in
test/SemaTemplate/instantiate-declref.cpp tells the "experienced user"
that we're now doing the right thing.
llvm-svn: 72526
As part of this, make ObjCImplDecl inherit from NamedDecl (since
ObjCImplementationDecls now need to have names so that they can be
found). This brings ObjCImplDecl very, very close to
ObjCContainerDecl; we may be able to merge them soon.
llvm-svn: 69941
de-serialization of abstract syntax trees.
PCH support serializes the contents of the abstract syntax tree (AST)
to a bitstream. When the PCH file is read, declarations are serialized
as-needed. For example, a declaration of a variable "x" will be
deserialized only when its VarDecl can be found by a client, e.g.,
based on name lookup for "x" or traversing the entire contents of the
owner of "x".
This commit provides the framework for serialization and (lazy)
deserialization, along with support for variable and typedef
declarations (along with several kinds of types). More
declarations/types, along with important auxiliary structures (source
manager, preprocessor, etc.), will follow.
llvm-svn: 68732
StoredDeclsMap, instead of using the it's-an-array-or-its-a-map
trick. I'll verify that performance isn't impacted later; for now, I
need the common representation.
llvm-svn: 68715
Introduce a new PrettyStackTraceDecl.
Use it to add the top level LLVM IR generation stuff in
Backend.cpp to stack traces. We now get crashes like:
Stack dump:
0. Program arguments: clang t.c -emit-llvm
1. <eof> parser at end of file
2. t.c:1:5: LLVM IR generation of declaration 'a'
Abort
for IR generation crashes.
llvm-svn: 66153
nicely sugared type that shows how the user wrote the actual
specialization. This sugared type won't actually show up until we
start doing instantiations.
llvm-svn: 65577
specializations. In particular:
- Make sure class template specializations have a "template<>"
header, and complain if they don't.
- Make sure class template specializations are declared/defined
within a valid context. (e.g., you can't declare a specialization
std::vector<MyType> in the global namespace).
llvm-svn: 65476
exactly one decl with a specific name in a specific context. This
avoids a bunch of malloc traffic and shrinks StoredDeclsMap to hold
one pointer instead of 3 words (for a std::vector).
This speeds up -fsyntax-only on cocoa.h with PTH by ~7.3%.
llvm-svn: 65103
specialization of class templates, e.g.,
template<typename T> class X;
template<> class X<int> { /* blah */ };
Each specialization is a different *Decl node (naturally), and can
have different members. We keep track of forward declarations and
definitions as for other class/struct/union types.
This is only the basic framework: we still have to deal with checking
the template headers properly, improving recovery when there are
failures, handling nested name specifiers, etc.
llvm-svn: 64848
would be in one place. Since, now, only DeclNodes.def needs to be modified, move things out-of-line and simplify the DeclContext class.
llvm-svn: 64630
-In DeclNodes.def, only mark as DeclContexts the top classes that directly derive from DeclContext. If the Decl has subclasses,
it should be marked with DECL_CONTEXT_BASE.
-Use DeclNodes.def to automate the DeclContext::classof and DeclContext::CastTo definitions.
llvm-svn: 64629
This will simplify runtime replacement of ASTContext's allocator. Keeping the allocator private (and removing getAllocator() entirely) is also goodness.
llvm-svn: 63135
that every declaration lives inside a DeclContext.
Moved several things that don't have names but were ScopedDecls (and,
therefore, NamedDecls) to inherit from Decl rather than NamedDecl,
including ObjCImplementationDecl and LinkageSpecDecl. Now, we don't
store empty DeclarationNames for these things, nor do we try to insert
them into DeclContext's lookup structure.
The serialization tests are temporarily disabled. We'll re-enable them
once we've sorted out the remaining ownership/serialiazation issues
between DeclContexts and TranslationUnion, DeclGroups, etc.
llvm-svn: 62562
even when we are still defining the TagDecl. This is required so that
qualified name lookup of a class name within its definition works (see
the new bits in test/SemaCXX/qualified-id-lookup.cpp).
As part of this, move the nested redefinition checking code into
ActOnTag. This gives us diagnostics earlier (when we try to perform
the nested redefinition, rather than when we try to complete the 2nd
definition) and removes some code duplication.
llvm-svn: 62386
of ScopedDecls (using the new ScopedDecl::NextDeclInScope
pointer). Performance-wise:
- It's a net win in memory utilization, since DeclContext is now one
pointer smaller than it used to be (std::vectors are typically 3
pointers; we now use 2 pointers) and
- Parsing Cocoa.h with -fsyntax-only (with a Release-Asserts Clang)
is about 1.9% faster than before, most likely because we no longer
have the memory allocations and copying associated with the
std::vector.
I'll re-enable serialization of DeclContexts once I've sorted out the
NextDeclarator/NextDeclInScope question.
llvm-svn: 62001
Add isa/cast/dyncast support for ObjCContainerDecl.
Renamed classprop_iterator/begin/end to prop_iterator/begin/end (the class prefix was confusing).
More simplifications to Sema::ActOnAtEnd()...
Added/changed some FIXME's as a result of the above work.
llvm-svn: 61988
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.
This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.
llvm-svn: 61929
structures and classes) in C++. Covers name lookup and the synthesis
and member access for the unnamed objects/fields associated with
anonymous unions.
Some C++ semantic checks are still missing (anonymous unions can't
have function members, static data members, etc.), and there is no
support for anonymous structs or unions in C.
llvm-svn: 61840
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
attached to an identifier. Instead, all overloaded functions will be
pushed into scope, and we'll synthesize an OverloadedFunctionDecl on
the fly when we need it.
llvm-svn: 61386
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
llvm-svn: 60878
parameters, with some semantic analysis:
- Template parameters are introduced into template parameter scope
- Complain about template parameter shadowing (except in Microsoft mode)
Note that we leak template parameter declarations like crazy, a
problem we'll remedy once we actually create proper declarations for
templates.
Next up: dependent types and value-dependent/type-dependent
expressions.
llvm-svn: 60597
struct A {
struct B;
};
struct A::B {
void m() {} // Assertion failed: getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
};
Introduce DeclContext::getLexicalParent which may be different from DeclContext::getParent when nested-names are involved, e.g:
namespace A {
struct S;
}
struct A::S {}; // getParent() == namespace 'A'
// getLexicalParent() == translation unit
llvm-svn: 59650
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
llvm-svn: 58499
Instead of using two sets of Decl kinds (Struct/Union/Class and CXXStruct/CXXUnion/CXXClass), use one 'Record' and one 'CXXRecord' Decl kind and make tag kind a property of TagDecl.
Cleans up the code a bit and better reflects that Decl class structure.
llvm-svn: 57541
When the static type on the Decl side is a subclass of DeclContext the compiler will use a "inlinable" static_cast, instead of always using an out-of-line function call.
Note, though, that the isa<> check still uses an out-of-line function call.
llvm-svn: 57415
- Modify BlockExpr to reference the BlockDecl.
This is "cleanup" necessary to improve our lookup semantics for blocks (to fix <rdar://problem/6272905> clang block rewriter: parameter to function not imported into block?).
Still some follow-up work to finish this (forthcoming).
llvm-svn: 57298