Commit Graph

206 Commits

Author SHA1 Message Date
Andrew Trick 375ee3e16a Add -mcpu=z10 to SystemZ tests.
llvm-svn: 197466
2013-12-17 05:27:16 +00:00
Richard Sandiford 0847c450b6 [SystemZ] Optimize X [!=]= Y in cases where X - Y or Y - X is also computed
In those cases it's better to compare the result of the subtraction
against zero.

llvm-svn: 197239
2013-12-13 15:50:30 +00:00
Richard Sandiford c3dc44781b [SystemZ] Make more use of TMHH
This originally came about after noticing that InstCombine turns
some of the TMHH (icmp (and...), ...) tests into plain comparisons.
Since there is no instruction to compare with a 64-bit immediate,
TMHH is generally better than an ordered comparison for the cases
that it can handle.

llvm-svn: 197238
2013-12-13 15:46:55 +00:00
Richard Sandiford 57485472e2 [SystemZ] Extend integer absolute selection
This patch makes more use of LPGFR and LNGFR.  It builds on top of
the LTGFR selection from r197234.  Most of the tests are motivated
by what InstCombine would produce.

llvm-svn: 197236
2013-12-13 15:35:00 +00:00
Richard Sandiford bd2f0e9cd0 [SystemZ] Make more use of LTGFR
InstCombine turns (sext (trunc)) into (ashr (shl)), then converts any
comparison of the ashr against zero into a comparison of the shl against zero.
This makes sense in itself, but we want to undo it for z, since the sign-
extension instruction has a CC-setting form.

I've included tests for both the original and InstCombined variants,
but the former already worked.  The patch fixes the latter.

llvm-svn: 197234
2013-12-13 15:07:39 +00:00
Richard Sandiford 73170f8488 [SystemZ] Optimize fcmp X, 0 in cases where X is also negated
In such cases it's often better to test the result of the negation instead,
since the negation also sets CC.

llvm-svn: 197032
2013-12-11 11:45:08 +00:00
Richard Sandiford d1093636cc Extend (truncate (load)) folding
DAGCombiner could fold (truncate (load)) -> smaller load if the original
load was the width of the truncation result or wider.  This patch extends
it to handle cases where the original load was narrower (and so the
extension type stays the same).

llvm-svn: 197030
2013-12-11 11:37:27 +00:00
Richard Sandiford bef3d7af2b Add TargetLowering::prepareVolatileOrAtomicLoad
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.

Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.

The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences.  It is a no-op for targets other than SystemZ.

llvm-svn: 196906
2013-12-10 10:49:34 +00:00
Richard Sandiford 9afe613d12 Add TargetLowering::prepareVolatileOrAtomicLoad
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.

Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.

The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences.  It is a no-op for targets other than SystemZ.

llvm-svn: 196905
2013-12-10 10:36:34 +00:00
Richard Sandiford 198ddf83c1 [SystemZ] Use LOAD AND TEST for comparisons with -0
...since it os equivalent to comparison with +0.

llvm-svn: 196580
2013-12-06 09:59:12 +00:00
Richard Sandiford 7b4118a0fc [SystemZ] Extend the use of C(L)GFR
instcombine prefers to put extended operands first, so this patch
handles that case for C(L)GFR.

llvm-svn: 196579
2013-12-06 09:56:50 +00:00
Richard Sandiford 48ef6abddc [SystemZ] Optimize selects between 0 and -1
Since z has no setcc instruction as such, the choice of setBooleanContents
is a bit arbitrary.  Currently it's set to ZeroOrOneBooleanContent,
so we produced a branch-free form when selecting between 0 and 1,
but not when selecting between 0 and -1.  This patch handles the latter
case too.

At some point I'd like to measure whether it's better to use conditional
moves for constant selects on z196, but that's future work.

llvm-svn: 196578
2013-12-06 09:53:09 +00:00
Richard Sandiford ccc2a7c1a0 [SystemZ] Fix choice of known-zero mask in insertion optimization
The backend converts 64-bit ORs into subreg moves if the upper 32 bits
of one operand and the low 32 bits of the other are known to be zero.
It then tries to peel away redundant ANDs from the upper 32 bits.

Since AND masks are canonicalized to exclude known-zero bits,
the test ORs the mask and the known-zero bits together before
checking for redundancy.  The problem was that it was using the
wrong node when checking for known-zero bits, so could drop ANDs
that were still needed.

llvm-svn: 196267
2013-12-03 11:01:54 +00:00
Richard Sandiford dd7dd930d1 [SystemZ] Fix incorrect use of RISBG for a zero-extended right shift
We would wrongly transform the testcase into the equivalent of an AND with 1.
The problem was that, when testing whether the shifted-in bits of the right
shift were significant, we used the width of the final zero-extended result
rather than the width of the shifted value.

llvm-svn: 195731
2013-11-26 10:53:16 +00:00
Richard Sandiford f03789ca3f [SystemZ] Fix TMHH and TMHL usage for z10 with -O0
I've no idea why I decided to handle TMxx differently from all the other
high/low logic operations, but it was a stupid thing to do.  The high
registers aren't available as separate 32-bit registers on z10,
so subreg_h32 can't be used on a GR64 there.

I've normally been testing with z196 and with -O3 and so hadn't noticed
this until now.

llvm-svn: 195473
2013-11-22 17:28:28 +00:00
Richard Sandiford f834ea19db [SystemZ] Automatically detect zEC12 and z196 hosts
As on other hosts, the CPU identification instruction is priveleged,
so we need to look through /proc/cpuinfo.  I copied the PowerPC way of
handling "generic".

Several tests were implicitly assuming z10 and so failed on z196.

llvm-svn: 193742
2013-10-31 12:14:17 +00:00
Richard Sandiford 094e609716 [SystemZ] Set usaAA to true
useAA significantly improves the handling of vector code that has TBAA
information attached.  It also helps other cases, as shown by the testsuite
changes here.  The only real downside I've seen is that it interferes with
MergeConsecutiveStores.  The problem is that that optimization works top
down, starting at the first store in the chain, and looks for cases where
the chain result is only used by a single related store.  These related
stores don't alias, so useAA will have rewritten all the later stores to
use a different chain input (typically the same one as the first store).

I think the advantages outweigh the disadvantages though, so for now I've
just disabled alias analysis for the unaligned-01.ll test.

llvm-svn: 193521
2013-10-28 13:53:37 +00:00
Richard Sandiford 981fdeb477 [DAGCombiner] Respect volatility when checking for aliases
Making useAA() default to true for SystemZ showed that the combiner alias
analysis wasn't handling volatile accesses.  This hit many of the SystemZ
tests, but I arbitrarily picked one for the purpose of this patch.

llvm-svn: 193518
2013-10-28 12:00:00 +00:00
Richard Sandiford 39c1ce4dc1 Keep TBAA info when rewriting SelectionDAG loads and stores
Most SelectionDAG code drops the TBAA info when creating a new form of a
load and store (e.g. during legalization, or when converting a plain
load to an extending one).  This patch tries to catch all cases where
the TBAA information can legitimately be carried over.

The patch adds alternative forms of getLoad() and getExtLoad() that take
a MachineMemOperand instead of individual fields.  (The corresponding
getTruncStore() already exists.)  The idea is to use the MachineMemOperand
forms when all fields are carried over (size, pointer info, isVolatile,
isNonTemporal, alignment and TBAA info).  If some adjustment is being
made, e.g. to narrow the load, then we still pass the individual fields
but also pass the TBAA info.

llvm-svn: 193517
2013-10-28 11:17:59 +00:00
Richard Sandiford 95f7ba988b Replace sra with srl if a single sign bit is required
E.g. (and (sra (i32 x) 31) 2) -> (and (srl (i32 x) 30) 2).

llvm-svn: 192884
2013-10-17 11:16:57 +00:00
Richard Sandiford 3e382972d9 [SystemZ] Handle extensions in RxSBG optimizations
The input to an RxSBG operation can be narrower as long as the upper bits
are don't care.  This fixes a FIXME added in r192783.

llvm-svn: 192790
2013-10-16 13:35:13 +00:00
Richard Sandiford f722a8e30e [SystemZ] Improve handling of SETCC
We previously used the default expansion to SELECT_CC, which in turn would
expand to "LHI; BRC; LHI".  In most cases it's better to use an IPM-based
sequence instead.

llvm-svn: 192784
2013-10-16 11:10:55 +00:00
Richard Sandiford 374a0e50c4 Handle (shl (anyext (shr ...))) in SimpilfyDemandedBits
This is really an extension of the current (shl (shr ...)) -> shl optimization.
The main difference is that certain upper bits must also not be demanded.

The motivating examples are the first two in the testcase, which occur
in llvmpipe output.

llvm-svn: 192783
2013-10-16 10:26:19 +00:00
Richard Sandiford 6af6ff1e15 [SystemZ] Use A(G)SI when spilling the target of a constant addition
llvm-svn: 192681
2013-10-15 08:42:59 +00:00
Richard Sandiford b63e300b67 [SystemZ] Add comparisons of high words and memory
llvm-svn: 191777
2013-10-01 15:00:44 +00:00
Richard Sandiford a9ac0e0f75 [SystemZ] Add comparisons of large immediates using high words
There are no corresponding patterns for small immediates because they would
prevent the use of fused compare-and-branch instructions.

llvm-svn: 191775
2013-10-01 14:56:23 +00:00
Richard Sandiford 42a694f44e [SystemZ] Add immediate addition involving high words
llvm-svn: 191774
2013-10-01 14:53:46 +00:00
Richard Sandiford 2cac763544 [SystemZ] Extend test-under-mask support to high GR32s
llvm-svn: 191773
2013-10-01 14:41:52 +00:00
Richard Sandiford 3ad5a15b72 [SystemZ] Extend 32-bit RISBG optimizations to high words
This involves using RISB[LH]G, whereas the equivalent z10 optimization
uses RISBG.

llvm-svn: 191770
2013-10-01 14:36:20 +00:00
Richard Sandiford 2896d044bd [SystemZ] Extend pseudo conditional 8- and 16-bit stores to high words
As the comment says, we always want to use STOC for 32-bit stores.

llvm-svn: 191767
2013-10-01 14:33:55 +00:00
Richard Sandiford 96f013b827 [SystemZ] Add test missing from r191764.
llvm-svn: 191765
2013-10-01 14:31:50 +00:00
Richard Sandiford 7028428c2c [SystemZ] Allow integer AND involving high words
llvm-svn: 191762
2013-10-01 14:20:41 +00:00
Richard Sandiford 5718dacbdd [SystemZ] Allow integer XOR involving high words
llvm-svn: 191759
2013-10-01 14:08:44 +00:00
Richard Sandiford 6e96ac600f [SystemZ] Allow integer OR involving high words
llvm-svn: 191755
2013-10-01 13:22:41 +00:00
Richard Sandiford 1a56931b22 [SystemZ] Allow integer insertions with a high-word destination
llvm-svn: 191753
2013-10-01 13:18:56 +00:00
Richard Sandiford 7c5c0eabc9 [SystemZ] Allow selects with a high-word destination
llvm-svn: 191751
2013-10-01 13:10:16 +00:00
Richard Sandiford 012402346f [SystemZ] Add patterns to load a constant into a high word (IIHF)
Similar to low words, we can use the shorter LLIHL and LLIHH if it turns
out that the other half of the GR64 isn't live.

llvm-svn: 191750
2013-10-01 13:02:28 +00:00
Richard Sandiford 21235a256f [SystemZ] Add register zero extensions involving at least one high word
llvm-svn: 191746
2013-10-01 12:49:07 +00:00
Richard Sandiford 5469c39a26 [SystemZ] Add truncating high-word stores (STCH and STHH)
llvm-svn: 191743
2013-10-01 12:22:49 +00:00
Richard Sandiford 0d46b1a30f [SystemZ] Add zero-extending high-word loads (LLCH and LLHH)
llvm-svn: 191742
2013-10-01 12:19:08 +00:00
Richard Sandiford 89e160d975 [SystemZ] Add sign-extending high-word loads (LBH and LHH)
llvm-svn: 191740
2013-10-01 12:11:47 +00:00
Richard Sandiford 0755c93b0c [SystemZ] Use upper words of GR64s for codegen
This just adds the basics necessary for allocating the upper words to
virtual registers (move, load and store).  The move support is parameterised
in a way that makes it easy to handle zero extensions, but the associated
zero-extend patterns are added by a later patch.

The easiest way of testing this seemed to be add a new "h" register
constraint for high words.  I don't expect the constraint to be useful
in real inline asms, but it should work, so I didn't try to hide it
behind an option.

llvm-svn: 191739
2013-10-01 11:26:28 +00:00
Manman Ren adf4cc171e TBAA: update tbaa format from scalar format to struct-path aware format.
llvm-svn: 191690
2013-09-30 18:17:55 +00:00
Manman Ren 0ed04fc9ab TBAA: handle scalar TBAA format and struct-path aware TBAA format.
Remove the command line argument "struct-path-tbaa" since we should not depend
on command line argument to decide which format the IR file is using. Instead,
we check the first operand of the tbaa tag node, if it is a MDNode, we treat
it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
format.

When clang starts to use struct-path aware TBAA format no matter whether
struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support
for scalar TBAA format can be dropped.

Existing testing cases are updated to use the struct-path aware TBAA format.

llvm-svn: 191538
2013-09-27 18:34:27 +00:00
Richard Sandiford 067817ee05 [SystemZ] Rein back the use of block operations
The backend tries to use block operations like MVC, NC, OC and XC for
simple scalar operations.  For correctness reasons, it rejects any case
in which the regions might partially overlap.  However, for performance
reasons, it should also reject cases where the regions might be equal,
since the instruction might then not use the fast path.

This fixes a performance regression seen in bzip2.  We may want to limit
the optimisation even more in future, or even remove it entirely, but I'll
try with this for now.

llvm-svn: 191525
2013-09-27 15:29:20 +00:00
Richard Sandiford 54b369166f [SystemZ] Improve handling of PC-relative addresses
The backend previously folded offsets into PC-relative addresses
whereever possible.  That's the right thing to do when the address
can be used directly in a PC-relative memory reference (using things
like LRL).  But if we have a register-based memory reference and need
to load the PC-relative address separately, it's better to use an anchor
point that could be shared with other accesses to the same area of the
variable.

Fixes a FIXME.

llvm-svn: 191524
2013-09-27 15:14:04 +00:00
Richard Sandiford 93183ee78c [SystemZ] Add unsigned compare-and-branch instructions
For some reason I never got around to adding these at the same time as
the signed versions.  No idea why.

I'm not sure whether this SystemZII::BranchC* stuff is useful, or whether
it should just be replaced with an "is normal" flag.  I'll leave that
for later though.

There are some boundary conditions that can be tweaked, such as preferring
unsigned comparisons for equality with [128, 256), and "<= 255" over "< 256",
but again I'll leave those for a separate patch.

llvm-svn: 190930
2013-09-18 09:56:40 +00:00
Richard Sandiford 109a7c6ff1 [SystemZ] Improve extload handling
The port originally had special patterns for extload, mapping them to the
same instructions as sextload.  It seemed neater to have patterns that
match "an extension that is allowed to be signed" and "an extension that
is allowed to be unsigned".

This was originally meant to be a clean-up, but it does improve the handling
of promoted integers a little, as shown by args-06.ll.

llvm-svn: 190777
2013-09-16 09:03:10 +00:00
Richard Sandiford 030c165710 [SystemZ] Try to fold shifts into TMxx
E.g. "SRL %r2, 2; TMLL %r2, 1" => "TMLL %r2, 4".

llvm-svn: 190672
2013-09-13 09:09:50 +00:00
Richard Sandiford a9eb9972e4 [SystemZ] Add TM and TMY
The main complication here is that TM and TMY (the memory forms) set
CC differently from the register forms.  When the tested bits contain
some 0s and some 1s, the register forms set CC to 1 or 2 based on the
value the uppermost bit.  The memory forms instead set CC to 1
regardless of the uppermost bit.

Until now, I've tried to make it so that a branch never tests for an
impossible CC value.  E.g. NR only sets CC to 0 or 1, so branches on the
result will only test for 0 or 1.  Originally I'd tried to do the same
thing for TM and TMY by using custom matching code in ISelDAGToDAG.
That ended up being very ugly though, and would have meant duplicating
some of the chain checks that the common isel code does.

I've therefore gone for the simpler alternative of adding an extra
operand to the TM DAG opcode to say whether a memory form would be OK.
This means that the inverse of a "TM;JE" is "TM;JNE" rather than the
more precise "TM;JNLE", just like the inverse of "TMLL;JE" is "TMLL;JNE".
I suppose that's arguably less confusing though...

llvm-svn: 190400
2013-09-10 10:20:32 +00:00