MIPS ELF symbols might contain some additional MIPS-specific flags
in the st_other field besides visibility ones. These flags indicate
code properties like microMIPS / MIPS16 encoding, position independent
code etc. We need to transfer the flags from input objects to the
output linked file to write them into the symbol table, adjust symbols
addresses etc.
I add new attribute CodeModel to the DefinedAtom class to hold target
specific flag and to get over YAML/Native format conversion barrier.
Other architectures/targets can extend CodeModel enumeration by their
own flags.
MIPS specific part of this patch adds support for STO_MIPS_MICROMIPS
flag. This flag marks microMIPS symbols. Such symbol should:
a) Has STO_MIPS_MICROMIPS in the corresponding .symtab record.
b) Has adjusted (odd) address in the corresponding .symtab
and .dynsym records.
llvm-svn: 221864
On darwin in final linked images, the __TEXT segment covers that start of the
file. That means in memory a process can see the mach_header (and load commands)
for every loaded image in a process. There are APIs that take and return the
mach_header addresses as a way to specify a particular loaded image.
For completeness, any code can get the address of the mach_header of the image
it is in by using &__dso_handle. In addition there are mach-o type specific
symbols like __mh_execute_header.
The linker needs to supply a definition for any of these symbols if used. But
the address the symbol it resolves to is not in any section. Instead it is the
address of the start of the __TEXT segment.
I needed to make a small change to SimpleFileNode to not override
resetNextIndex() because the Driver creates a SimpleFileNode to hold the
internal/implicit files that the context/writer can create. For some reason
SimpleFileNode overrode resetNextIndex() to do nothing instead of reseting
the index (which mach-o needs if the internal file is an archive).
llvm-svn: 221822
Darwin uses two-level-namespace lookup for symbols which means the static
linker records where each symbol must be found at runtime. Thus defining a
symbol in a dylib loaded earlier will not effect where symbols needed by
later dylibs will be found. Instead overriding is done through a section
of type S_INTERPOSING which contains tuples of <interposer, interposee>.
llvm-svn: 221421
This is a minimally useful pass to construct the __unwind_info section in a
final object from the various __compact_unwind inputs. Currently it doesn't
produce any compressed pages, only works for x86_64 and will fail if any
function ends up without __compact_unwind.
rdar://problem/18208653
llvm-svn: 218703
This provides support for the autoconfing & make build style.
The format, style and implementation follows that used within the llvm and clang projects.
TODO: implement out-of-source documentation builds.
llvm-svn: 210177
Previously section groups are doubly linked to their children.
That is, an atom representing a group has group-child references
to its group contents, and content atoms also have group-parent
references to the group atom. That relationship was invariant;
if X has a group-child edge to Y, Y must have a group-parent
edge to X.
However we were not using group-parent references at all. The
resolver only needs group-child edges.
This patch simplifies the section group by removing the unused
reverse edge. No functionality change intended.
Differential Revision: http://reviews.llvm.org/D3945
llvm-svn: 210066
isAlias always returns false and no one is using it. It was
originally added Atom to query if an atom is an alias for another
atom, assuming that alias atoms are different from normal atoms.
We now support atom aliasing, but the way that's implemented is
in a different way than what isAlias assumed. An alias atom is
just a regular defined atom with no content, and it has a layout-
before edge to alias-to atom so that they are layed out at the
same location in the result. So this is dead code, and it doesn't
make much sense to keep it.
llvm-svn: 207884
.gnu.linkonce sections are similar to section groups.
They were supported before section groups existed and provided a way
to resolve COMDAT sections using a different design.
There are few implementations that use .gnu.linkonce sections
to store simple floating point constants which doesnot require complex section
group support but need a way to store only one copy of the floating point
constant in a binary.
.gnu.linkonce based symbol resolution achieves that.
Review : http://llvm-reviews.chandlerc.com/D3242
llvm-svn: 205280
This reverts commit 5d5ca72a7876c3dd3dd1db83dc6a0d74be9e2cd1.
Discuss on a better design to raise error when there is a similar group with Gnu
linkonce sections and COMDAT sections.
llvm-svn: 205224
.gnu.linkonce sections are similar to section groups. They were supported before
section groups existed and provided a way to resolve COMDAT sections using a
different design. There are few implementations that use .gnu.linkonce sections
to store simple floating point constants which doesnot require complex section
group support but need a way to store only one copy of the floating point
constant. .gnu.linkonce based symbol resolution achieves that.
llvm-svn: 205163
COMDAT_SELECT_LARGEST is a COMDAT type that make linker to choose the largest
definition from among all of the definition of a symbol. If the size is the
same, the choice is arbitrary.
Differential Revision: http://llvm-reviews.chandlerc.com/D3011
llvm-svn: 204172
This results in some simplifications to the code where an OwningPtr had to
be used with the previous api and then ownership moved to a unique_ptr for
the rest of lld.
llvm-svn: 203809
Summary:
COMDAT_SELECT_SAME_SIZE is a COMDAT type that I presume exist only in COFF.
The semantics of the type is that linker should merge such COMDAT sections if
their sizes are the same. Otherwise it's an error.
Reviewers: Bigcheese, shankarke, kledzik
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2996
llvm-svn: 203308
The main goal of this patch is to allow "mach-o encoded as yaml" and "native
encoded as yaml" documents to be intermixed. They are distinguished via
yaml tags at the start of the document. This will enable all mach-o test cases
to be written using yaml instead of checking in object files.
The Registry was extend to allow yaml tag handlers to be registered. The
mach-o Reader adds a yaml tag handler for the tag "!mach-o".
Additionally, this patch fixes some buffer ownership issues. When parsing
mach-o binaries, the mach-o atoms can have pointers back into the memory
mapped .o file. But with yaml encoded mach-o, name and content are ephemeral,
so a copyRefs parameter was added to cause the mach-o atoms to make their
own copy.
llvm-svn: 198986
The main changes are in:
include/lld/Core/Reference.h
include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.
1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers. It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.
The new model is that there is a global Registry object. You programmatically
register the Readers you want with the registry object. Whenever you need to
read/parse a file, you ask the registry to do it, and the registry tries each
registered reader.
For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object.
2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings. Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values. The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value. This tuple system allows conversion to and from strings with
no ambiguities.
llvm-svn: 197727
This patch is to basically move the functionality to construct Data Directory
from IdataPass to WriterPECOFF.
Data Directory is a part of the PE/COFF header and contains the addresses of
the import tables.
We used to represent the link from Data Directory to the import tables as
relocation references. The idea behind it is that, because relocation
references are processed by the Writer, we wouldn't have to do anything special
to fill the addresses of the import tables. I thought that the addresses would
be set "automatically".
But it turned out that that design made the pass and the writer rather
complicated. In order to make relocation references between Data Directory to
the import tables, these data structures needed to be represented as Atom.
However, because Data Directory is not a section content but a part of the
PE/COFF header, it did not fit well as an Atom. So we ended up having
complicated code both in IdataPass and the writer.
This patch simplifies it.
One side effect of this patch is that we now have ".idata.a", ".idata.d" and
"idata.t" sections for the import address table, the import directory table,
and the import lookup table. The writer looks for the sections by name to find
the start addresses of the sections. We probably should have a better way to
find a specific atom from the core linking result, but currently using the
section name seems to be the easiest way to do that. The Windows loader do not
care about the import table's section layout.
llvm-svn: 197016