On Darwin, there are some apps that rely on realloc(nullptr, 0) returning a valid pointer. TSan currently returns nullptr in this case, let's fix it to avoid breaking binary compatibility.
Differential Revision: https://reviews.llvm.org/D22800
llvm-svn: 277458
Another stack where we try to free sync objects,
but don't have a processors is:
// ResetRange
// __interceptor_munmap
// __deallocate_stack
// start_thread
// clone
Again, it is a latent bug that lead to memory leaks.
Also, increase amount of memory we scan in MetaMap::ResetRange.
Without that the test does not fail, as we fail to free
the sync objects on stack.
llvm-svn: 269041
Fixes crash reported in:
https://bugs.chromium.org/p/v8/issues/detail?id=4995
The problem is that we don't have a processor in a free interceptor
during thread exit.
The crash was introduced by introduction of Processors.
However, previously we silently leaked memory which wasn't any better.
llvm-svn: 268782
In http://reviews.llvm.org/D19100, I introduced a bug: On OS X, existing programs rely on malloc_size() to detect whether a pointer comes from heap memory (malloc_size returns non-zero) or not. We have to distinguish between a zero-sized allocation (where we need to return 1 from malloc_size, due to other binary compatibility reasons, see http://reviews.llvm.org/D19100), and pointers that are not returned from malloc at all.
Differential Revision: http://reviews.llvm.org/D19653
llvm-svn: 268157
Current interface assumes that Go calls ProcWire/ProcUnwire
to establish the association between thread and proc.
With the wisdom of hindsight, this interface does not work
very well. I had to sprinkle Go scheduler with wire/unwire
calls, and any mistake leads to hard to debug crashes.
This is not something one wants to maintian.
Fortunately, there is a simpler solution. We can ask Go
runtime as to what is the current Processor, and that
question is very easy to answer on Go side.
Switch to such interface.
llvm-svn: 267703
This is reincarnation of http://reviews.llvm.org/D17648 with the bug fix pointed out by Adhemerval (zatrazz).
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 267678
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
1. Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
2. Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
3. This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
4. Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 262037
On OS X, for weak function (that user can override by providing their own implementation in the main binary), we need extern `"C" SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE`.
Fixes a broken test case on OS X, java_symbolization.cc, which uses a weak function __tsan_symbolize_external.
Differential Revision: http://reviews.llvm.org/D14907
llvm-svn: 254298
Race deduplication code proved to be a performance bottleneck in the past if suppressions/annotations are used, or just some races left unaddressed. And we still get user complaints about this:
https://groups.google.com/forum/#!topic/thread-sanitizer/hB0WyiTI4e4
ReportRace already has several layers of caching for racy pcs/addresses to make deduplication faster. However, ReportRace still takes a global mutex (ThreadRegistry and ReportMutex) during deduplication and also calls mmap/munmap (which take process-wide semaphore in kernel), this makes deduplication non-scalable.
This patch moves race deduplication outside of global mutexes and also removes all mmap/munmap calls.
As the result, race_stress.cc with 100 threads and 10000 iterations become 30x faster:
before:
real 0m21.673s
user 0m5.932s
sys 0m34.885s
after:
real 0m0.720s
user 0m23.646s
sys 0m1.254s
http://reviews.llvm.org/D12554
llvm-svn: 246758
This happens only in corner cases, but we observed this on a real app.
See the test for description of the exact scenario that lead to unbounded memory consumption.
llvm-svn: 240535
Summary:
Turn "allocator_may_return_null" common flag into an
Allocator::may_return_null bool flag. We want to make sure
that common flags are immutable after initialization. There
are cases when we want to change this flag in the allocator
at runtime: e.g. in unit tests and during ASan activation
on Android.
Test Plan: regression test suite, real-life applications
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6623
llvm-svn: 224148
Summary:
This change removes `__tsan::StackTrace` class. There are
now three alternatives:
# Lightweight `__sanitizer::StackTrace`, which doesn't own a buffer
of PCs. It is used in functions that need stack traces in read-only
mode, and helps to prevent unnecessary allocations/copies (e.g.
for StackTraces fetched from StackDepot).
# `__sanitizer::BufferedStackTrace`, which stores buffer of PCs in
a constant array. It is used in TraceHeader (non-Go version)
# `__tsan::VarSizeStackTrace`, which owns buffer of PCs, dynamically
allocated via TSan internal allocator.
Test Plan: compiler-rt test suite
Reviewers: dvyukov, kcc
Reviewed By: kcc
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D6004
llvm-svn: 221194
I don't remember that crash on mmap in internal allocator
ever yielded anything useful, only crashes in rare wierd untested situations.
One of the reasons for crash was to catch if tsan starts allocating
clocks using mmap. Tsan does not allocate clocks using internal_alloc anymore.
Solve it once and for all by allowing mmaps.
llvm-svn: 217929
Introduce new public header <sanitizer/allocator_interface.h> and a set
of functions __sanitizer_get_ownership(), __sanitizer_malloc_hook() etc.
that will eventually replace their tool-specific equivalents
(__asan_get_ownership(), __msan_get_ownership() etc.). Tool-specific
functions are now deprecated and implemented as stubs redirecting
to __sanitizer_ versions (which are implemented differently in each tool).
Replace all uses of __xsan_ versions with __sanitizer_ versions in unit
and lit tests.
llvm-svn: 212469
The former used to crash with a null deref if it was given a not owned pointer,
while the latter returned 0. Now they both return 0. This is still not the best possible
behavior: it is better to print an error report with a stack trace, pointing
to the error in user code, as we do in ASan.
llvm-svn: 212112
The new storage (MetaMap) is based on direct shadow (instead of a hashmap + per-block lists).
This solves a number of problems:
- eliminates quadratic behaviour in SyncTab::GetAndLock (https://code.google.com/p/thread-sanitizer/issues/detail?id=26)
- eliminates contention in SyncTab
- eliminates contention in internal allocator during allocation of sync objects
- removes a bunch of ad-hoc code in java interface
- reduces java shadow from 2x to 1/2x
- allows to memorize heap block meta info for Java and Go
- allows to cleanup sync object meta info for Go
- which in turn enabled deadlock detector for Go
llvm-svn: 209810
The refactoring makes suppressions more flexible
and allow to suppress based on arbitrary number of stacks.
In particular it fixes:
https://code.google.com/p/thread-sanitizer/issues/detail?id=64
"Make it possible to suppress deadlock reports by any stack (not just first)"
llvm-svn: 209757
This is intended to address the following problem.
Episodically we see CHECK-failures when recursive interceptors call back into user code. Effectively we are not "in_rtl" at this point, but it's very complicated and fragile to properly maintain in_rtl property. Instead get rid of it. It was used mostly for sanity CHECKs, which basically never uncover real problems.
Instead introduce ignore_interceptors flag, which is used in very few narrow places to disable recursive interceptors (e.g. during runtime initialization).
llvm-svn: 197979