This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Follow up to D25691, this sets up the plumbing necessary to support vector demanded elements support in known bits calculations in target nodes.
Differential Revision: https://reviews.llvm.org/D31249
llvm-svn: 299201
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
This change adds support for software floating point operations for Sparc targets.
This is the first in a set of patches to enable software floating point on Sparc. The next patch will enable the option to be used with Clang.
Differential Revision: http://reviews.llvm.org/D19265
llvm-svn: 269892
This code implements builtin_setjmp and builtin_longjmp exception handling intrinsics for 32-bit Sparc back-ends.
The code started as a mash-up of the PowerPC and X86 versions, although there are sufficient differences to both that had to be made for Sparc handling.
Note: I have manual tests running. I'll work on a unit test and add that to the rest of this diff in the next day.
Also, this implementation is only for 32-bit Sparc. I haven't focussed on a 64-bit version, although I have left the code in a prepared state for implementing this, including detecting pointer size and comments indicating where I suspect there may be differences.
Differential Revision: http://reviews.llvm.org/D19798
llvm-svn: 268483
This patch changes the TargetMachine arguments to be const. This is
required for {D19265}, and was requested to be done in a separate patch.
Patch by Jacob Hansen!
Differential Revision: http://reviews.llvm.org/D19797
llvm-svn: 268389
They were previously expanded to CAS loops in a custom isel expansion,
but AtomicExpandPass knows how to do that generically.
Testing is covered by the existing sparc atomics.ll testcases.
llvm-svn: 264771
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
The LDD/STD instructions can load/store a 64bit quantity from/to
memory to/from a consecutive even/odd pair of (32-bit) registers. They
are part of SparcV8, and also present in SparcV9. (Although deprecated
there, as you can store 64bits in one register).
As recommended on llvmdev in the thread "How to enable use of 64bit
load/store for 32bit architecture" from Apr 2015, I've modeled the
64-bit load/store operations as working on a v2i32 type, rather than
making i64 a legal type, but with few legal operations. The latter
does not (currently) work, as there is much code in llvm which assumes
that if i64 is legal, operations like "add" will actually work on it.
The same assumption does not hold for v2i32 -- for vector types, it is
workable to support only load/store, and expand everything else.
This patch:
- Adds a new register class, IntPair, for even/odd pairs of registers.
- Modifies the list of reserved registers, the stack spilling code,
and register copying code to support the IntPair register class.
- Adds support in AsmParser. (note that in asm text, you write the
name of the first register of the pair only. So the parser has to
morph the single register into the equivalent paired register).
- Adds the new instructions themselves (LDD/STD/LDDA/STDA).
- Hooks up the instructions and registers as a vector type v2i32. Adds
custom legalizer to transform i64 load/stores into v2i32 load/stores
and bitcasts, so that the new instructions can actually be
generated, and marks all operations other than load/store on v2i32
as needing to be expanded.
- Copies the unfortunate SelectInlineAsm hack from ARMISelDAGToDAG.
This hack undoes the transformation of i64 operands into two
arbitrarily-allocated separate i32 registers in
SelectionDAGBuilder. and instead passes them in a single
IntPair. (Arbitrarily allocated registers are not useful, asm code
expects to be receiving a pair, which can be passed to ldd/std.)
Also adds a bunch of test cases covering all the bugs I've added along
the way.
Differential Revision: http://reviews.llvm.org/D8713
llvm-svn: 244484
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
SDNodes and MachineOperands get target flags representing the %hi() and
%lo() assembly annotations that eventually become relocations.
Also define flags to be used by the 64-bit code models.
llvm-svn: 179468
Integer return values are sign or zero extended by the callee, and
structs up to 32 bytes in size can be returned in registers.
The CC_Sparc64 CallingConv definition is shared between
LowerFormalArguments_64 and LowerReturn_64. Function arguments and
return values are passed in the same registers.
The inreg flag is also used for return values. This is required to handle
C functions returning structs containing floats and ints:
struct ifp {
int i;
float f;
};
struct ifp f(void);
LLVM IR:
define inreg { i32, float } @f() {
...
ret { i32, float } %retval
}
The ABI requires that %retval.i is returned in the high bits of %i0
while %retval.f goes in %f1.
Without the inreg return value attribute, %retval.i would go in %i0 and
%retval.f would go in %f3 which is a more efficient way of returning
%multiple values, but it is not ABI compliant for returning C structs.
llvm-svn: 178966
This requires v9 cmov instructions using the %xcc flags instead of the
%icc flags.
Still missing:
- Select floats on %xcc flags.
- Select i64 on %fcc flags.
llvm-svn: 178737
The same compare instruction is used for 32-bit and 64-bit compares. It
sets two different sets of flags: icc and xcc.
This patch adds a conditional branch instruction using the xcc flags for
64-bit compares.
llvm-svn: 178621
This is far from complete, but it is enough to make it possible to write
test cases using i64 arguments.
Missing features:
- Floating point arguments.
- Receiving arguments on the stack.
- Calls.
llvm-svn: 178523
We are going to use the same registers for 32-bit and 64-bit values, but
in two different register classes. The I64Regs register class has a
larger spill size and alignment.
The addition of an i64 register class confuses TableGen's type
inference, so it is necessary to clarify the type of some immediates and
the G0 register.
In 64-bit mode, pointers are i64 and should use the I64Regs register
class. Implement getPointerRegClass() to dynamically provide the pointer
register class depending on the subtarget. Use ptr_rc and iPTR for
memory operands.
Finally, add the i64 type to the IntRegs register class. This register
class is not used to hold i64 values, I64Regs is for that. The type is
required to appease TableGen's type checking in output patterns like this:
def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
SPARC v9 uses the same ADDrr instruction for i32 and i64 additions, and
TableGen doesn't know to check the type of register sub-classes.
llvm-svn: 178522
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011