Move RegStackify after coalescing and teach it to use LiveIntervals instead
of depending on SSA form. This avoids a problem where a register in a COPY
instruction is stackified and then subsequently coalesced with a register
that is not stackified.
This also puts it after the scheduler, which allows us to simplify the
EXPR_STACK constraint, as we no longer have instructions being reordered
after stackification and before coloring.
llvm-svn: 256402
Summary: Linker testing was sad at seeing an unresolved external symbol. For now don't do that: it's valid but we're not playing with multi-file linking yet, and the LLVM tests are used as hacky sanity tests for single-file linking (the GCC torture tests are much better for this purpose). Another solution would be to use '.extern' to make the intent explicit (don't simple-file link this, there's an unresolved symbol), some assemblers use '.extern' while others ignore it, so we wouldn't really be inventing anything new.
Reviewers: sunfish, kripken
Subscribers: jfb, llvm-commits, dschuff
Differential Revision: http://reviews.llvm.org/D15753
llvm-svn: 256353
The test will mainly be useful to check that the .s file assembles and relocates properly because vtables reference functions in their data section.
llvm-svn: 256102
Summary:
Implement eliminateCallFramePsuedo to handle ADJCALLSTACKUP/DOWN
pseudo-instructions. Add a test calling a vararg function which causes non-0
adjustments. This revealed an issue with RegisterCoalescer wherein it
eliminates a COPY from SP32 to a vreg but failes to update the live ranges
of EXPR_STACK, causing a machineinstr verifier failure (so this test
is commented out).
Also add a dynamic alloca test, which causes a callseq_end dag node with
a 0 (instead of undef) second argument to be generated. We currently fail to
select that, so adjust the ADJCALLSTACKUP tablegen code to handle it.
Differential Revision: http://reviews.llvm.org/D15587
llvm-svn: 255844
Add instruction patterns for matching load and store instructions with constant
offsets in addresses. The code is fairly redundant due to the need to replicate
everything between imm, tglobaldadr, and texternalsym, but this appears to be
common tablegen practice. The main alternative appears to be to introduce
matching functions with C++ code, but sticking with purely generated matchers
seems better for now.
Also note that this doesn't yet support offsets from getelementptr, which will
be the most common case; that will depend on a change in target-independent code
in order to set the NoUnsignedWrap flag, which I'll submit separately. Until
then, the testcase uses ptrtoint+add+inttoptr with a nuw on the add.
Also implement isLegalAddressingMode with an approximation of this.
Differential Revision: http://reviews.llvm.org/D15538
llvm-svn: 255681
This case was tested in the linker from code, but not from globals indexing into other globals. The linker currently barfs on this, ncbray volunteered to fix it.
llvm-svn: 255601
Add return type information to call and call_indirect instructions. This
allows them to be disambiguated without knowledge of the callee.
Differential Revision: http://reviews.llvm.org/D15484
llvm-svn: 255565
Implement a new BLOCK scope placement algorithm which better handles
early-return blocks and early exists from nested scopes.
Differential Revision: http://reviews.llvm.org/D15368
llvm-svn: 255564
Summary:
Use the SP32 physical register as the base for FrameIndex
lowering. Update it and the __stack_pointer global var in the prolog and
epilog. Extend the mapping of virtual registers to wasm locals to
include the physical registers.
Rather than modify the target-independent PrologEpilogInserter (which
asserts that there are no virtual registers left) include a
slightly-modified copy for Wasm that does not have this assertion and
only clears the virtual registers if scavenging was needed (which of
course it isn't for wasm).
Differential Revision: http://reviews.llvm.org/D15344
llvm-svn: 255392
ISD::FCOPYSIGN permits its operands to have differing types, and DAGCombiner
uses this. Add some def : Pat rules to expand this out into an explicit
conversion and a normal copysign operation.
llvm-svn: 255220
Target-specific instructions may have uninteresting physreg clobbers,
for target-specific reasons. The peephole pass doesn't need to concern
itself with such defs, as long as they're implicit and marked as dead.
llvm-svn: 255182
Reinteroduce the code for moving ARGUMENTS back to the top of the basic block.
While the ARGUMENTS physical register prevents sinking and scheduling from
moving them, it does not appear to be sufficient to prevent SelectionDAG from
moving them down in the initial schedule. This patch introduces a patch that
moves them back to the top immediately after SelectionDAG runs.
This is still hopefully a temporary solution. http://reviews.llvm.org/D14750 is
one alternative, though the review has not been favorable, and proposed
alternatives are longer-term and have other downsides.
This fixes the main outstanding -verify-machineinstrs failures, so it adds
-verify-machineinstrs to several tests.
Differential Revision: http://reviews.llvm.org/D15377
llvm-svn: 255125
This patch introduces a codegen-only instruction currently named br_unless,
which makes it convenient to implement ReverseBranchCondition and re-enable
the MachineBlockPlacement pass. Then in a late pass, it lowers br_unless
back into br_if.
Differential Revision: http://reviews.llvm.org/D14995
llvm-svn: 254826
Add physical register defs to instructions used from stackified
instructions to prevent them from being scheduled into the middle of
a stack sequence. This is a conservative measure which may be loosened
in the future.
Differential Revision: http://reviews.llvm.org/D15252
llvm-svn: 254811
This is just prototype for load/store for i32 types. I'll add them to
the rest of the types if we like this direction.
Differential Revision: http://reviews.llvm.org/D15197
llvm-svn: 254807
Full varargs support will depend on prologue/epilogue support, but this patch
gets us started with most of the basic infrastructure.
Differential Revision: http://reviews.llvm.org/D15231
llvm-svn: 254799
When a block has no terminator instructions, getFirstTerminator() returns
end(), which can't be used in dominance checks. Check dominance for phi
operands separately.
Also, remove some bits from WebAssemblyRegStackify.cpp that were causing
trouble on the same testcase; they were left behind from an earlier
experiment.
Differential Revision: http://reviews.llvm.org/D15210
llvm-svn: 254662
Instead of trying to move ARGUMENT instructions back up to the top after
they've been scheduled or sunk down, use a fake physical register to
create a liveness constraint that prevents ARGUMENT instructions from
moving down in the first place. This is still not entirely ideal, however
it is more robust than letting them move and moving them back.
llvm-svn: 254084
With the '=' suffix now indicating which operands are output operands, it's
no longer as important to distinguish between a call's inputs and its outputs
using operand ordering, so we can go back to printing them in the normal order.
llvm-svn: 253925
This distinguishes input operands from output operands. This is something of
a syntactic experiment to see whether the mild amount of clutter this adds is
outweighed by the extra information it conveys to the reader.
llvm-svn: 253922
The current approach to using get_local and set_local is to use them
implicitly, as register uses and defs. Introduce new copy instructions
which are themselves no-ops except for the get_local and set_local
that they imply, so that we use get_local and set_local consistently.
llvm-svn: 253905
WebAssembly is currently using labels to end scopes, so for example a
loop scope looks like this:
BB0_0:
loop BB0_1
...
BB0_1:
with BB0_0 being the label of the first block not in the loop. This
requires that the label be printed even when it's only reachable via
fallthrough. To arrange this, insert a no-op LOOP_END instruction in
such cases at the end of the loop.
llvm-svn: 253901
Always starting blocks at the top of their containing loops works, but creates
unnecessarily deep nesting because it makes all blocks in a loop overlap.
Refine the BLOCK placement algorithm to start blocks at nearest common
dominating points instead, which significantly shrinks them and reduces
overlapping.
llvm-svn: 253876