This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
This adds back r222061, but now calls initializePAEvalPass from the correct
library to avoid link problems.
Original message:
Don't make assumptions about the name of private global variables.
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
llvm-svn: 222117
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
llvm-svn: 222061
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
The use_iterator redesign in r203364 introduced an increment past the
end of a range in -objc-arc-contract. Added an explicit check for the
end of the range.
<rdar://problem/16333235>
llvm-svn: 204195
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
cycles
This allows the value equality check to work even if we don't have a dominator
tree. Also add some more comments.
I was worried about compile time impacts and did not implement reachability but
used the dominance check in the initial patch. The trade-off was that the
dominator tree was required.
The llvm utility function isPotentiallyReachable cuts off the recursive search
after 32 visits. Testing did not show any compile time regressions showing my
worries unjustfied.
No compile time or performance regressions at O3 -flto -mavx on test-suite +
externals.
Addresses review comments from r198290.
llvm-svn: 198400
When there are cycles in the value graph we have to be careful interpreting
"Value*" identity as "value" equivalence. We interpret the value of a phi node
as the value of its operands.
When we check for value equivalence now we make sure that the "Value*" dominates
all cycles (phis).
%0 = phi [%noaliasval, %addr2]
%l = load %ptr
%addr1 = gep @a, 0, %l
%addr2 = gep @a, 0, (%l + 1)
store %ptr ...
Before this patch we would return NoAlias for (%0, %addr1) which is wrong
because the value of the load is from different iterations of the loop.
Tested on x86_64 -mavx at O3 and O3 -flto with no performance or compile time
regressions.
PR18068
radar://15653794
llvm-svn: 198290
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
llvm-svn: 195535
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
Due to the previously added overflow checks, we can have a retain/release
relation that is one directional. This occurs specifically when we run into an
additive overflow causing us to drop state in only one direction. If that
occurs, we should bail and not optimize that retain/release instead of
asserting.
Apologies for the size of the testcase. It is necessary to cause the additive
cfg overflow to trigger.
rdar://15377890
llvm-svn: 194083
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
llvm-svn: 190205
The reason that I am turning off this optimization is that there is an
additional case where a block can escape that has come up. Specifically, this
occurs when a block is used in a scope outside of its current scope.
This can cause a captured retainable object pointer whose life is preserved by
the objc_retainBlock to be deallocated before the block is invoked.
An example of the code needed to trigger the bug is:
----
\#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
void (^somethingToDoLater)();
{
NSObject *obj = [NSObject new];
somethingToDoLater = ^{
[obj self]; // Crashes here
};
}
NSLog(@"test.");
somethingToDoLater();
return 0;
}
----
In the next commit, I remove all the dead code that results from this.
Once I put in the fixing commit I will bring back the tests that I deleted in
this commit.
rdar://14802782.
rdar://14868830.
llvm-svn: 189869
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
I fixed the aforementioned problems that came up on some of the linux boxes.
Major thanks to Nick Lewycky for his help debugging!
rdar://14590914
llvm-svn: 188122
This reverts commit r187941.
The commit was passing on my os x box, but it is failing on some non-osx
platforms. I do not have time to look into it now, so I am reverting and will
recommit after I figure this out.
llvm-svn: 187946
This conversion was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)define\([^@]*\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3define\4@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186269
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
In the presense of a block being initialized, the frontend will emit the
objc_retain on the original pointer and the release on the pointer loaded from
the alloca. The optimizer will through the provenance analysis realize that the
two are related (albiet different), but since we only require KnownSafe in one
direction, will match the inner retain on the original pointer with the guard
release on the original pointer. This is fixed by ensuring that in the presense
of allocas we only unconditionally remove pointers if both our retain and our
release are KnownSafe (i.e. we are KnownSafe in both directions) since we must
deal with the possibility that the frontend will emit what (to the optimizer)
appears to be unbalanced retain/releases.
An example of the miscompile is:
%A = alloca
retain(%x)
retain(%x) <--- Inner Retain
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
release(%x) <--- Guarding Release
getting optimized to:
%A = alloca
retain(%x)
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
rdar://13750319
llvm-svn: 181743
Turning retains into retainRV calls disrupts the data flow analysis in
ObjCARCOpts. Thus we move it as late as we can by moving it into
ObjCARCContract.
We leave in the conversion from retainRV -> retain in ObjCARCOpt since
it enables the dataflow analysis.
rdar://10813093
llvm-svn: 180698
Mainly adding paranoid checks for the closing brace of a function to
help with FileCheck error readability. Also some other minor changes.
No actual CHECK changes.
llvm-svn: 180668
Specifically:
1. Added checks that unwind is being properly added to various instructions.
2. Fixed the declaration/calling of objc_release to have a return type of void.
3. Moved all checks to precede the functions and added checks to ensure that the
checks would only match inside the specific function that we are attempting to
check.
llvm-svn: 179973
This occurs due to an alloca representing a separate ownership from the
original pointer. Thus consider the following pseudo-IR:
objc_retain(%a)
for (...) {
objc_retain(%a)
%block <- %a
F(%block)
objc_release(%block)
}
objc_release(%a)
From the perspective of the optimizer, the %block is a separate
provenance from the original %a. Thus the optimizer pairs up the inner
retain for %a and the outer release from %a, resulting in segfaults.
This is fixed by noting that the signature of a mismatch of
retain/releases inside the for loop is a Use/CanRelease top down with an
None bottom up (since bottom up the Retain-CanRelease-Use-Release
sequence is completed by the inner objc_retain, but top down due to the
differing provenance from the objc_release said sequence is not
completed). In said case in CheckForCFGHazards, we now clear the state
of %a implying that no pairing will occur.
Additionally a test case is included.
rdar://12969722
llvm-svn: 179747
The normal dataflow sequence in the ARC optimizer consists of the following
states:
Retain -> CanRelease -> Use -> Release
The optimizer before this patch stored the uses that determine the lifetime of
the retainable object pointer when it bottom up hits a retain or when top down
it hits a release. This is correct for an imprecise lifetime scenario since what
we are trying to do is remove retains/releases while making sure that no
``CanRelease'' (which is usually a call) deallocates the given pointer before we
get to the ``Use'' (since that would cause a segfault).
If we are considering the precise lifetime scenario though, this is not
correct. In such a situation, we *DO* care about the previous sequence, but
additionally, we wish to track the uses resulting from the following incomplete
sequences:
Retain -> CanRelease -> Release (TopDown)
Retain <- Use <- Release (BottomUp)
*NOTE* This patch looks large but the most of it consists of updating
test cases. Additionally this fix exposed an additional bug. I removed
the test case that expressed said bug and will recommit it with the fix
in a little bit.
llvm-svn: 178921