Supporting a compact display syntax for ObjC pointers where 0x00.....0 is replaced by a much more legible "nil"
e.g. this would show:
(NSArray *) $2 = nil
instead of:
(NSArray *) $2 = 0x0000000000000000 <nil>
llvm-svn: 170161
Added a "step-in-target" flag to "thread step-in" so if you have something like:
Process 28464 stopped
* thread #1: tid = 0x1c03, function: main , stop reason = breakpoint 1.1
frame #0: 0x0000000100000e08 a.out`main at main.c:62
61
-> 62 int A6 = complex (a(4), b(5), c(6)); // Stop here to step targetting b and hitting breakpoint.
63
and you want to get into "complex" skipping a, b and c, you can do:
(lldb) step -t complex
Process 28464 stopped
* thread #1: tid = 0x1c03, function: complex , stop reason = step in
frame #0: 0x0000000100000d0d a.out`complex at main.c:44
41
42 int complex (int first, int second, int third)
43 {
-> 44 return first + second + third; // Step in targetting complex should stop here
45 }
46
47 int main (int argc, char const *argv[])
llvm-svn: 170008
the option to print the runtime-specific description has been modified in the frame variable, memory read and expression command.
All three commands now support a --object-description option, with a shortcut of -O (uppercase letter o)
This is a breaking change:
frame variable used --objc as the long option name
expression used -o as a shortcut
memory read uses --objd as the long option name
Hopefully, most users won't be affected by the change since people tend to access "expression --object-description" under the alias "po" which still works
The test suite has been tweaked accordingly.
llvm-svn: 169961
"self" when those pointers are in registers.
Previously in this case the IRInterpreter would
handle them just as if the user had typed in
"$rdi", which isn't safe because $rdi is passed
in through the argument struct.
Now we correctly break out all three cases (i.e.,
normal variables in registers, $reg, and this/self),
and handle them in a way that's a little bit easier
to read and change.
This results in more accurate printing of "this" and
"self" pointers all around. I have strengthened the
optimized-code test case for Objective-C to ensure
that we catch regressions in this area reliably in
the future.
<rdar://problem/12693963>
llvm-svn: 169924
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- Removed the BitfieldMap class because it is unnecessary.
We now just track the most recently added field.
- Moved the code that calculates bitfield widths so it
can also be used to determine whether it's necessary
to insert anonymous fields.
- Simplified the anonymous field calculation code into
three cases (two of which are resolved identically).
- Beefed up the bitfield testcase.
llvm-svn: 169449
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
- use lldb settings command instead of os.environ
- use dyldPath fixture variable instead of hardcoding LD_LIBRARY_PATH
- add tear-down hook to restore environment after testcase is run
llvm-svn: 168613
- use lldb 'settings' command to help testcase find shared library
- pull up dyldPath variable from TestLoadUnload.py to fixture base class (applicable in multiple cases)
llvm-svn: 168612
- missing includes in cpp test programs
- mismatched dwarf/dsym test cases
- make "com.apple.main-thread" expected string conditional on darwin platform
llvm-svn: 168452
expressions that refer to ivars will not work because Clang
emits IR that refers to them to get the ivar offsets.
However, it is possible to search the runtime for these values.
I have added support for reading the relevant tables to the
Objective-C runtime, and extended ClangExpressionDeclMap to
query that information if and only if it doesn't find the symbols
in the binary.
Also added a testcase.
<rdar://problem/12628122>
llvm-svn: 168018
This feature allows us to group test cases into logical groups (categories), and to only run a subset of test cases based on these categories.
Each test-case can have a new method getCategories(self): which returns a list of strings that are the categories to which the test case belongs.
If a test-case does not provide its own categories, we will look for categories in the class that contains the test case.
If that fails too, the default implementation looks for a .category file, which contains a comma separated list of strings.
The test suite will recurse look for .categories up until the top level directory (which we guarantee will have an empty .category file).
The driver dotest.py has a new --category <foo> option, which can be repeated, and specifies which categories of tests you want to run.
(example: ./dotest.py --category objc --category expression)
All tests that do not belong to any specified category will be skipped. Other filtering options still exist and should not interfere with category filtering.
A few tests have been categorized. Feel free to categorize others, and to suggest new categories that we could want to use.
All categories need to be validly defined in dotest.py, or the test suite will refuse to run when you use them as arguments to --category.
In the end, failures will be reported on a per-category basis, as well as in the usual format.
This is the very first stage of this feature. Feel free to chime in with ideas for improvements!
llvm-svn: 164403
(actually, mainly just hooked up support that was already
there). Added a test case, although it's expected to fail
right now unless you're using top-of-tree LLVM.
llvm-svn: 157220
boxed expressions returning numbers and strings.
I also added boxed expressions to our testcases, and
enabled boxed expressions when libarclite is linked into
the inferior.
llvm-svn: 157026
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
the controlling plans so that they don't lose control.
Also change "ThreadPlanStepThrough" to take the return StackID for its backstop breakpoint as an argument
to the constructor rather than having it try to figure it out itself, since it might get it wrong whereas
the caller always knows where it is coming from.
rdar://problem/11402287
llvm-svn: 156529
ObjCPlusPlus as Objective-C classes. Really the
compiler should say they have Objective-C runtime
class, but we should be a little more resilient
(we were refusing to find ivars in those classes
before).
Also added a test case.
llvm-svn: 155515
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
This takes two important changes:
- Calling blocks is now supported. You need to
cast their return values, but that works fine.
- We now can correctly run JIT-compiled
expressions that use floating-point numbers.
Also, we have taken a fix that allows us to
ignore access control in Objective-C as in C++.
llvm-svn: 152286
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
LLVM/Clang. This brings in several fixes, including:
- Improvements in the Just-In-Time compiler's
allocation of memory: the JIT now allocates
memory in chunks of sections, improving its
ability to generate relocations. I have
revamped the RecordingMemoryManager to reflect
these changes, as well as to get the memory
allocation and data copying out fo the
ClangExpressionParser code. Jim Grosbach wrote
the updates to the JIT on the LLVM side.
- A new ExternalASTSource interface to allow LLDB to
report accurate structure layout information to
Clang. Previously we could only report the sizes
of fields, not their offsets. This meant that if
data structures included field alignment
directives, we could not communicate the necessary
alignment to Clang and accesses to the data would
fail. Now we can (and I have update the relevant
test case). Thanks to Doug Gregor for implementing
the Clang side of this fix.
- The way Objective-C interfaces are completed by
Clang has been made consistent with RecordDecls;
with help from Doug Gregor and Greg Clayton I have
ensured that this still works.
- I have eliminated all local LLVM and Clang patches,
committing the ones that are still relevant to LLVM
and Clang as needed.
I have tested the changes extensively locally, but
please let me know if they cause any trouble for you.
llvm-svn: 149775
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
performing Objective-C instance variable lookup.
Previously, it only completed the derived class
that was the beginning of the search. Now, as
it walks up the superclass chain looking for the
ivar, it completes each superclass in turn.
Also added a testcase covering this issue.
llvm-svn: 147621
parser has hitherto been an implementation waiting
for a use. I have now tied the '-o' option for
the expression command -- which indicates that the
result is an Objective-C object and needs to be
printed -- to the ExpressionParser, which
communicates the desired type to Clang.
Now, if the result of an expression is determined
by an Objective-C method call for which there is
no type information, that result is implicitly
cast to id if and only if the -o option is passed
to the expression command. (Otherwise if there
is no explicit cast Clang will issue an error.
This behavior is identical to what happened before
r146756.)
Also added a testcase for -o enabled and disabled.
llvm-svn: 147099
"id" from being found by the parser as an
externally-defined type. Before, "id" would
sometimes make it through if it was defined in
a namespace, but this sometimes caused
confusion, for example when it conflicted with
std::locale::id.
llvm-svn: 146891
we handle Objective-C method calls. Currently,
LLDB treats the result of an Objective-C method
as unknown if the type information doesn't have
the method's signature. Now Clang can cast the
result to id if it isn't explicitly cast.
I also added a test case for this, as well as a
fix for a type import problem that this feature
exposed.
llvm-svn: 146756
translation unit has a interface for a class "Bar" that contains hidden ivars
in the implementation and we make sure we can see these hidden ivars. We also
test the case where we stop in translation unit that contains the
implementation first. So the test runs two tests:
1 - run and stop where we have an interface, run to main and print and make
sure we find the hidden ivar
2 - run and stop where we have an implementation, run to main and print and make
sure we find the hidden ivar
llvm-svn: 146216
in the context in which it was originally found, the
expression parser now goes hunting for it in all modules
(in the appropriate namespace, if applicable). This means
that forward-declared types that exist in another shared
library will now be resolved correctly.
Added a test case to cover this. The test case also tests
"frame variable," which does not have this functionality
yet.
llvm-svn: 146204
pointer to make the result of an expression. LLDB now
dumps the ivars of the Objective-C object and all of
its parents. This just required fixing a bug where we
didn't distinguish between Objective-C object pointers
and regular C-style pointers.
Also added a testcase to verify that this continues to
work.
llvm-svn: 146164
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489