* Implements all of the discussed features:
- Links against common CAPI libraries that are self contained.
- Stops using the 'python/' directory at the root for everything, opening the namespace up for multiple projects to embed the MLIR python API.
- Separates declaration of sources (py and C++) needed to build the extension from building, allowing external projects to build custom assemblies from core parts of the API.
- Makes the core python API relocatable (i.e. it could be embedded as something like 'npcomp.ir', 'npcomp.dialects', etc). Still a bit more to do to make it truly isolated but the main structural reset is done.
- When building statically, installed python packages are completely self contained, suitable for direct setup and upload to PyPi, et al.
- Lets external projects assemble their own CAPI common runtime library that all extensions use. No more possibilities for TypeID issues.
- Begins modularizing the API so that external projects that just include a piece pay only for what they use.
* I also rolled in a re-organization of the native libraries that matches how I was packaging these out of tree and is a better layering (i.e. all libraries go into a nested _mlir_libs package). There is some further cleanup that I resisted since it would have required source changes that I'd rather do in a followup once everything stabilizes.
* Note that I made a somewhat odd choice in choosing to recompile all extensions for each project they are included into (as opposed to compiling once and just linking). While not leveraged yet, this will let us set definitions controlling the namespacing of the extensions so that they can be made to not conflict across projects (with preprocessor definitions).
* This will be a relatively substantial breaking change for downstreams. I will handle the npcomp migration and will coordinate with the circt folks before landing. We should stage this and make sure it isn't causing problems before landing.
* Fixed a couple of absolute imports that were causing issues.
Differential Revision: https://reviews.llvm.org/D106520
This commits adds a basic LSP server for MLIR that supports resolving references and definitions. Several components of the setup are simplified to keep the size of this commit down, and will be built out in later commits. A followup commit will add a vscode language client that communicates with this server, paving the way for better IDE experience when interfacing with MLIR files.
The structure of this tool is similar to mlir-opt and mlir-translate, i.e. the implementation is structured as a library that users can call into to implement entry points that contain the dialects/passes that they are interested in.
Note: This commit contains several files, namely those in `mlir-lsp-server/lsp`, that have been copied from the LSP code in clangd and adapted for use in MLIR. This copying was decided as the best initial path forward (discussed offline by several stake holders in MLIR and clangd) given the different needs of our MLIR server, and the one for clangd. If a strong desire/need for unification arises in the future, the existence of these files in mlir-lsp-server can be reconsidered.
Differential Revision: https://reviews.llvm.org/D100439
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:
* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.
* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.
Differential Revision: https://reviews.llvm.org/D89103
Summary:
* Native '_mlir' extension module.
* Python mlir/__init__.py trampoline module.
* Lit test that checks a message.
* Uses some cmake configurations that have worked for me in the past but likely needs further elaboration.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83279
Create the framework and testing environment for MLIR Reduce - a tool
with the objective to reduce large test cases into smaller ones while
preserving their interesting behavior.
Implement the functionality to parse command line arguments, parse the
MLIR test cases into modules and run the interestingness tests on
the modules.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D82803
with the objective to reduce large test cases into smaller ones while
preserving their interesting behavior.
Implement the framework to parse the command line arguments, parse the
input MLIR test case into a module and call reduction passes on the MLIR module.
Implement the Tester class which allows the different reduction passes to test the
interesting behavior of the generated reduced variants of the test case and keep track
of the most reduced generated variant.
Summary: This avoids adding any additional global constructors, like cl::opt. There is a temporary exception on IR/, which has a few cl::opts that require a bit of plumbing to remove.
Differential Revision: https://reviews.llvm.org/D77824
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77479
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
Per tacit agreement, individual dialects should now live in lib/Dialect/Name
with headers in include/mlir/Dialect/Name and tests in test/Dialect/Name.
PiperOrigin-RevId: 259896851
This converts entire loops into threads/blocks. No check on the size of the
block or grid, or on the validity of parallelization is performed, it is under
the responsibility of the caller to strip-mine the loops and to perform the
dependence analysis before calling the conversion.
PiperOrigin-RevId: 253189268
This CL sets up the basic structure for a SPIR-V dialect: operation
definition specification, dialect registration, testing, etc.
A single op, FMul, is defined and tested to showcase.
The SPIR-V dialect aims to be a simple proxy for the SPIR-V binary format
to enable straightforward and lightweight conversion from/to the binary
format. Ops in this dialect should stay as the same semantic level and
try to be a mechanical mapping to the corresponding SPIR-V instructions;
but they can deviate representationally to allow using MLIR mechanisms.
--
PiperOrigin-RevId: 250040830
We now have sufficient extensibility in dialects to move attribute components
such as SDBM out of the core IR into a dedicated dialect and make them
optional. Introduce an SDBM dialect and move the code. This is a mostly
non-functional change.
--
PiperOrigin-RevId: 249244802
This adds the basic passes needed and ties them into mlir-opt. Also adds two specific unit tests that exercise them.
Next step is a standalone quantizer tool and additional cleanup.
Tested:
ninja check-mlir
--
PiperOrigin-RevId: 249167690
Adding the additional layer of directory was discussed offline and matches the Target/ tree. The names match the defacto convention we seem to be following where the C++ namespace is ^(.+)Ops/$ matched against the directory name.
This is in preparation for patching the Quantizer into this tree, which would have been confusing without moving the Quantization dialect to its more proper home. It is left to others to move other dialects if desired.
Tested:
ninja check-mlir
--
PiperOrigin-RevId: 248171982
Define a new dialect related to GPU kernels. Currently, it only contains a
single operation for launching a kernel on a three-dimensional grid of thread
blocks, following a model similar to that of CUDA. In particular, the body of
the kernel contains operations executed by each thread and uses region
arguments to accept thread and block identifiers (similar to how the loop body
region accepts the induction value).
--
PiperOrigin-RevId: 245713728
This CL starts implementing a Linalg dialect with the objective of supporting
optimizing compilation of loops and library calls for a subset of common linear
algebra operations.
This CL starts by simply adding a linalg.range type and an operation with the
proper roundtripping test.
--
PiperOrigin-RevId: 244189468