This gives a rough estimate of whether using pushes instead of movs is profitable, in terms of size.
We go over all calls in the MachineFunction and compute:
a) For each callsite that can not use pushes, the penalty of not having a reserved call frame.
b) For each callsite that can use pushes, the gain of actually replacing the movs with pushes (and the potential penalty of having to readjust the stack).
Differential Revision: http://reviews.llvm.org/D7561
llvm-svn: 228915
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
(Re-commit of r227728)
Differential Revision: http://reviews.llvm.org/D6789
llvm-svn: 227752
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
Differential Revision: http://reviews.llvm.org/D6789
llvm-svn: 227728
This handles the simplest case for mov -> push conversion:
1. x86-32 calling convention, everything is passed through the stack.
2. There is no reserved call frame.
3. Only registers or immediates are pushed, no attempt to combine a mem-reg-mem sequence into a single PUSHmm.
Differential Revision: http://reviews.llvm.org/D6503
llvm-svn: 223757